Tag Archives: three phase gear motor

China OEM Hot Sales High Efficient 120W 140W 250W 100mm AC Electric Induction Gear Motor Single Phase or Three Phase vacuum pump distributors

Product Description

MOTOR FRAME SIZE 60 mm / 70mm / 80mm / 90mm / 104mm
MOTOR TYPE INDUCTION MOTOR / REVERSIBLE MOTOR / TORQUE MOTOR / SPEED CONTROL MOTOR
SERIES K series
OUTPUT POWER 3 W / 6W / 10W / 15W / 25W / 40W / 60W / 90W / 120 W / 140W / 180W / 200W (can be customized)
OUTPUT SHAFT 8mm / 10mm / 12mm / 15mm ; round shaft, D-cut shaft, key-way shaft (can be customized)
Voltage type Single phase 100-120V 50/60Hz 4P Single phase 200-240V 50/60Hz 4P
Three phase 200-240V 50/60Hz Three phase 380-415V 50/60Hz 4P
Three phase 440-480V 60Hz 4P Three phase 200-240/380-415/440-480V 50/60/60Hz 4P
Accessories Terminal box type / with Fan / thermal protector / electromagnetic brake
Above 60 W, all assembled with fan
GEARBOX FRAME SIZE 60 mm / 70mm / 80mm / 90mm / 104mm
GEAR RATIO 3G-300G
GEARBOX TYPE PARALLEL SHAFT GEARBOX AND STRENGTH TYPE
Right angle hollow worm shaft Right angle spiral bevel hollow shaft L type hollow shaft
Right angle CHINAMFG worm shaft Right angle spiral bevel CHINAMFG shaft L type CHINAMFG shaft
K2 series air tightness improved type
Certification CCC CE ISO9001 CQC

other product

 

Certifications

 

Packaging & Shipping

 

Company Profile

FAQ

Q: How to select a suitable motor or gearbox?
A:If you have motor pictures or drawings to show us, or you have detailed specifications, such as, voltage, speed, torque, motor size, working mode of the motor, needed lifetime and noise level etc, please do not hesitate to let us know, then we can recommend suitable motor per your request accordingly.

Q: Do you have a customized service for your standard motors or gearboxes?
A: Yes, we can customize per your request for the voltage, speed, torque and shaft size/shape. If you need additional wires/cables soldered on the terminal or need to add connectors, or capacitors or EMC we can make it too.

Q: Do you have an individual design service for motors?
A: Yes, we would like to design motors individually for our customers, but some kind of molds are necessory to be developped which may need exact cost and design charging.

Q: What’s your lead time?
A: Generally speaking, our regular standard product will need 15-30days, a bit longer for customized products. But we are very flexible on the lead time, it will depend on the specific orders.
 

/* January 22, 2571 19:08:37 */!function(){function s(e,r){var a,o={};try{e&&e.split(“,”).forEach(function(e,t){e&&(a=e.match(/(.*?):(.*)$/))&&1

Application: Machine Tool
Speed: High Speed
Number of Stator: Three-Phase
Samples:
US$ 50/Piece
1 Piece(Min.Order)

|

Order Sample

Customization:
Available

|

.shipping-cost-tm .tm-status-off{background: none;padding:0;color: #1470cc}

Shipping Cost:

Estimated freight per unit.







about shipping cost and estimated delivery time.
Payment Method:







 

Initial Payment



Full Payment
Currency: US$
Return&refunds: You can apply for a refund up to 30 days after receipt of the products.

gear motor

Where can individuals find reliable resources for learning more about gear motors and their applications?

Individuals seeking to learn more about gear motors and their applications have access to various reliable resources that provide valuable information and insights. Here are some sources where individuals can find reliable information about gear motors:

1. Manufacturer Websites:

Manufacturer websites are a primary source of information about gear motors. Gear motor manufacturers often provide detailed product specifications, application guides, technical documentation, and educational materials on their websites. These resources offer insights into different gear motor types, features, performance characteristics, and application considerations. Manufacturer websites are a reliable and convenient starting point for learning about gear motors.

2. Industry Associations and Organizations:

Industry associations and organizations related to mechanical engineering, automation, and motion control often have resources and publications dedicated to gear motors. These organizations provide technical articles, whitepapers, industry standards, and guidelines related to gear motor design, selection, and application. Examples of such associations include the American Gear Manufacturers Association (AGMA), International Electrotechnical Commission (IEC), and Institute of Electrical and Electronics Engineers (IEEE).

3. Technical Publications and Journals:

Technical publications and journals focused on engineering, robotics, and motion control are valuable sources of in-depth knowledge about gear motors. Publications like IEEE Transactions on Industrial Electronics, Mechanical Engineering magazine, or Motion System Design magazine often feature articles, case studies, and research papers on gear motor technology, advancements, and applications. These publications provide authoritative and up-to-date information from industry experts and researchers.

4. Online Forums and Communities:

Online forums and communities dedicated to engineering, robotics, and automation can be excellent resources for discussions, insights, and practical experiences related to gear motors. Websites like Stack Exchange, engineering-focused subreddits, or specialized forums provide platforms for individuals to ask questions, share knowledge, and engage in discussions with professionals and enthusiasts in the field. Participating in these communities allows individuals to learn from real-world experiences and gain practical insights.

5. Educational Institutions and Courses:

Technical colleges, universities, and vocational training centers often offer courses or programs in mechanical engineering, mechatronics, or automation that cover gear motor fundamentals and applications. These educational institutions provide comprehensive curricula, textbooks, and lecture materials that can serve as reliable resources for individuals interested in learning about gear motors. Additionally, online learning platforms like Coursera, Udemy, or LinkedIn Learning offer courses on topics related to gear motors and motion control.

6. Trade Shows and Exhibitions:

Attending trade shows, exhibitions, and industry conferences related to automation, robotics, or motion control provides opportunities to learn about the latest advancements in gear motor technology. These events often feature product demonstrations, technical presentations, and expert panels where individuals can interact with gear motor manufacturers, industry experts, and other professionals. It’s a great way to stay updated on the latest trends, innovations, and applications of gear motors.

When seeking reliable resources, it’s important to consider the credibility of the source, the expertise of the authors, and the relevance to the specific area of interest. By leveraging these resources, individuals can gain a comprehensive understanding of gear motors and their applications, from basic principles to advanced topics, enabling them to make informed decisions and effectively utilize gear motors in their projects or applications.

gear motor

Are there environmental benefits to using gear motors in certain applications?

Yes, there are several environmental benefits associated with the use of gear motors in certain applications. Gear motors offer advantages that can contribute to increased energy efficiency, reduced resource consumption, and lower environmental impact. Here’s a detailed explanation of the environmental benefits of using gear motors:

1. Energy Efficiency:

Gear motors can improve energy efficiency in various ways:

  • Torque Conversion: Gear reduction allows gear motors to deliver higher torque output while operating at lower speeds. This enables the motor to perform tasks that require high torque, such as lifting heavy loads or driving machinery with high inertia, more efficiently. By matching the motor’s power characteristics to the load requirements, gear motors can operate closer to their peak efficiency, minimizing energy waste.
  • Controlled Speed: Gear reduction provides finer control over the motor’s rotational speed. This allows for more precise speed regulation, reducing the likelihood of energy overconsumption and optimizing energy usage.

2. Reduced Resource Consumption:

The use of gear motors can lead to reduced resource consumption and environmental impact:

  • Smaller Motor Size: Gear reduction allows gear motors to deliver higher torque with smaller, more compact motors. This reduction in motor size translates to reduced material and resource requirements during manufacturing. It also enables the use of smaller and lighter equipment, which can contribute to energy savings during operation and transportation.
  • Extended Motor Lifespan: The gear mechanism in gear motors helps reduce the load and stress on the motor itself. By distributing the load more evenly, gear motors can help extend the lifespan of the motor, reducing the need for frequent replacements and the associated resource consumption.

3. Noise Reduction:

Gear motors can contribute to a quieter and more environmentally friendly working environment:

  • Noise Dampening: Gear reduction can help reduce the noise generated by the motor. The gear mechanism acts as a noise dampener, absorbing and dispersing vibrations and reducing overall noise emission. This is particularly beneficial in applications where noise reduction is important, such as residential areas, offices, or noise-sensitive environments.

4. Precision and Control:

Gear motors offer enhanced precision and control, which can lead to environmental benefits:

  • Precise Positioning: Gear motors, especially stepper motors and servo motors, provide precise positioning capabilities. This accuracy allows for more efficient use of resources, minimizing waste and optimizing the performance of machinery or systems.
  • Optimized Control: Gear motors enable precise control over speed, torque, and movement. This control allows for better optimization of processes, reducing energy consumption and minimizing unnecessary wear and tear on equipment.

In summary, using gear motors in certain applications can have significant environmental benefits. Gear motors offer improved energy efficiency, reduced resource consumption, noise reduction, and enhanced precision and control. These advantages contribute to lower energy consumption, reduced environmental impact, and a more sustainable approach to power transmission and control. When selecting motor systems for specific applications, considering the environmental benefits of gear motors can help promote energy efficiency and sustainability.

gear motor

What is a gear motor, and how does it combine the functions of gears and a motor?

A gear motor is a type of motor that incorporates gears into its design to combine the functions of gears and a motor. It consists of a motor, which provides the mechanical power, and a set of gears, which transmit and modify this power to achieve specific output characteristics. Here’s a detailed explanation of what a gear motor is and how it combines the functions of gears and a motor:

A gear motor typically consists of two main components: the motor and the gear system. The motor is responsible for converting electrical energy into mechanical energy, generating rotational motion. The gear system, on the other hand, consists of multiple gears with different sizes and tooth configurations. These gears are meshed together in a specific arrangement to transmit and modify the output torque and speed of the motor.

The gears in a gear motor serve several functions:

1. Torque Amplification:

One of the primary functions of the gear system in a gear motor is to amplify the torque output of the motor. By using gears with different sizes, the input torque can be effectively multiplied or reduced. This allows the gear motor to provide higher torque at lower speeds or lower torque at higher speeds, depending on the gear arrangement. This torque amplification is beneficial in applications where high torque is required, such as in heavy machinery or vehicles.

2. Speed Reduction or Increase:

The gear system in a gear motor can also be used to reduce or increase the rotational speed of the motor output. By utilizing gears with different numbers of teeth, the gear ratio can be adjusted to achieve the desired speed output. For example, a gear motor with a higher gear ratio will output lower speed but higher torque, whereas a gear motor with a lower gear ratio will output higher speed but lower torque. This speed control capability allows for precise matching of motor output to the requirements of specific applications.

3. Directional Control:

Gears in a gear motor can be used to control the direction of rotation of the motor output shaft. By employing different combinations of gears, such as spur gears, bevel gears, or worm gears, the rotational direction can be changed. This directional control is crucial in applications where bidirectional movement is required, such as in conveyor systems or robotic arms.

4. Load Distribution:

The gear system in a gear motor helps distribute the load evenly across multiple gears, which reduces the stress on individual gears and increases the overall durability and lifespan of the motor. By sharing the load among multiple gears, the gear motor can handle higher torque applications without putting excessive strain on any particular gear. This load distribution capability is especially important in heavy-duty applications that require continuous operation under demanding conditions.

By combining the functions of gears and a motor, gear motors offer several advantages. They provide torque amplification, speed control, directional control, and load distribution capabilities, making them suitable for various applications that require precise and controlled mechanical power. Gear motors are commonly used in industries such as robotics, automotive, manufacturing, and automation, where reliable and efficient power transmission is essential.

China OEM Hot Sales High Efficient 120W 140W 250W 100mm AC Electric Induction Gear Motor Single Phase or Three Phase   vacuum pump distributorsChina OEM Hot Sales High Efficient 120W 140W 250W 100mm AC Electric Induction Gear Motor Single Phase or Three Phase   vacuum pump distributors
editor by CX 2024-04-24

China Good quality Three Phase AC Gear Motor 120W 90mm Gear Motor vacuum pump adapter

Product Description

AC Gear Motor
4 RK 25 R C C F G10
Outer Diameter Motor Type Power Capacity Speed Motor Votalge Output Shaft Shape Accessories Derived Code
2 – 60mm
3 – 70mm
4 – 80mm
5 – 90mm
6 – 100mm
IK – Induction
RK – Reversible
TK – Torque
6 – 6W
15 – 15W
40 – 40W
60 – 60W
90 – 90W
120 – 120W
140 – 140W
180 – 180W
200 – 200W
250 – 250W
R   A -1 Phase 110V
C – 1 Phase 220V
C2 – 1 Phase 110V/220V
S – 3 Phase 220V
S2 – 3 Phase 220V/380V
S3 – 3 Phase 380V
S4 – 3 Phase 440V
SS3 – 3 Phase 220V/380V
A – Round Shaft
C – Toothed Shaft 
T/P – Thermally Protected
F – Fan
M – Electro-manetic
Z – Damping
Dimension
Shaft Length

AC Gearhead
4 GN 60 K G12 T
Outer Diameter Motor Shaft Shape Gear Ratio Bearing Model Output Shaft Diameter Installation Method
2 – 60mm
3 – 70mm
4 – 80mm
5 – 90mm
6 – 104mm
GN – Bevel Gear Shaft
GU – Bevel Gear Shaft
GS – Strengthen T-shaped installation
GZ – Right-angle gearbox
GM – Intermediate gearbox
60 – 1:60 K – Standard Rolling Bearings
RT – Right Angle
RC – Right Angle Hollow
G12 –  Ф12mm L – Screw Hole
T – Through Hole

Specifications of Motor
Motor Type Motor Model No. Description Rating Start Condenser Gear Model No.
Cylindncal
Output Shaft
Pinion Cut
Output Shaft
Force Peripheral Wave No. Valtage Current Start Turning Moment Turning Moment Revolving No. Capacity Resistance Voltage Pairing Bearing Middle Gear
( W ) ( Hz ) ( V ) ( A ) ( gcm ) ( gcm ) ( rpm ) ( uF ) ( V )
Rerersible
 Motor
4RK25A-A 4RK25GN-A 25 50 110 0.60 1950 1950 1250 8 250 4GN-K 4GN10X
60 110 0.55 1650 1620 1500 7
4RK25A-C 4RK25GN-C 50 220 0.30 1950 1950 1250 2 500 4GN-K 4GN10X
60 220 0.27 1650 1620 1500 1.8
4RK30A-A 4RK30GN-A 30 50 110 0.70 2400 2350 1250 10 250 4GN-K 4GN10X
60 110 0.65 1950 1950 1500 8
4RK30A-C 4RK30GN-C 50 220 0.35 2400 2350 1250 2.5 500 4GN-K 4GN10X
60 220 0.32 1950 1950 1500 2
4RK40A-A 4RK40GN-A 40 50 110 0.80 3250 3250 1250 16 250 4GN-K 4GN10X
60 110 0.75 3600 2600 1500 14
4RK40A-C 4RK40GN-C 50 220 0.40 3250 3250 1250 4 500 4GN-K 4GN10X
60 220 0.38 2600 2600 1500 3.5
Induction
 Motor
4IK25A-A 4IK25GN-A 25 50 110 0.55 1650 1950 1250 7 250 4GN-K 4GN10X
60 110 0.50 1380 1620 1500 6
4IK25A-C 4IK25GN-C 50 220 0.28 1650 1950 1250 1.8 500 4GN-K 4GN10X
60 220 0.25 1350 1620 1500 1.5
4IK30A-A 4IK30GN-A 30 50 110 0.65 2050 2350 1250 10 250 4GN-K 4GN10X
60 110 0.60 1750 1950 1500 8
4IK30A-C 4IK30GN-C 50 220 0.33 2050 2350 1250 2.2 500 4GN-K 4GN10X
60 220 0.30 1750 1950 1500 2
External Dimension
Type Reduction Ratio L1(mm) L2(mm) L3(mm)
4IK(RK)25A(GN) 1:3 ~ 1:20 86 32 118
4IK(RK)30A(GN) 86 32 118
4IK(RK)40A(GN) 101 32 133
4IK(RK)25A(GN) 1:25 ~ 1:180 86 44 130
4IK(RK)30A(GN) 86 44 130
4IK(RK)40A(GN) 101 44 145
Gear Head-Torque Table (kg.cm) 
 ( kg.cm x 9.8 ÷ 100 ) = N.m
 r/min 500 300 200 150 120 100 75 60 50 30 20 15 10 7.5 6 5 3
Gear Redcution Ratio 50Hz 3 5 7.5 10 12.5 15 20 25 30 50 75 100 150 200 250 300 500
60Hz 3.6 6 9   15 18   30 36 60 90 120 180   300 360 600
Permissible Load 25W kg.cm 4 6.7 10 13.3 16 20 26.7 32 39 65 80 80 80 80 80 80 80
30W kg.cm 4.8 8 12 16 20 24 32 38 45 76 80 80 80 80 80 80 80
40W kg.cm 6.7 11 16 21.3 28 33 42 54 65 80 80 80 80 80 80 80 80
Note: Speed figures are based on synchronous speed, the actual output speed, under rated torque conditions, is about 10~20% less than synchronous speed.
Grey background indicates: output shaft of geared motor rotates in the same direction as output shaft of motor
White background indicates: rotation in the opposite direction

  /* January 22, 2571 19:08:37 */!function(){function s(e,r){var a,o={};try{e&&e.split(“,”).forEach(function(e,t){e&&(a=e.match(/(.*?):(.*)$/))&&1

Application: Industrial
Speed: Constant Speed
Number of Stator: Single-Phase
Function: Driving, Control
Casing Protection: Protection Type
Number of Poles: 4
Customization:
Available

|

gear motor

What are the maintenance requirements for gear motors, and how can longevity be maximized?

Gear motors, like any mechanical system, require regular maintenance to ensure optimal performance and longevity. Proper maintenance practices help prevent failures, minimize downtime, and extend the lifespan of gear motors. Here are some maintenance requirements for gear motors and ways to maximize their longevity:

1. Lubrication:

Regular lubrication is essential for gear motors to reduce friction, wear, and heat generation. The gears, bearings, and other moving parts should be properly lubricated according to the manufacturer’s recommendations. Lubricants should be selected based on the motor’s specifications and operating conditions. Regular inspection and replenishment of lubricants, as well as periodic oil or grease changes, should be performed to maintain optimal lubrication levels and ensure long-lasting performance.

2. Inspection and Cleaning:

Regular inspection and cleaning of gear motors are crucial for identifying any signs of wear, damage, or contamination. Inspecting the gears, bearings, shafts, and connections can help detect any abnormalities or misalignments. Cleaning the motor’s exterior and ventilation channels to remove dust, debris, or moisture buildup is also important in preventing malfunctions and maintaining proper cooling. Any loose or damaged components should be repaired or replaced promptly.

3. Temperature and Environmental Considerations:

Monitoring and controlling the temperature and environmental conditions surrounding gear motors can significantly impact their longevity. Excessive heat can degrade lubricants, damage insulation, and lead to premature component failure. Ensuring proper ventilation, heat dissipation, and avoiding overloading the motor can help manage temperature effectively. Similarly, protecting gear motors from moisture, dust, chemicals, and other environmental contaminants is vital to prevent corrosion and damage.

4. Load Monitoring and Optimization:

Monitoring and optimizing the load placed on gear motors can contribute to their longevity. Operating gear motors within their specified load and speed ranges helps prevent excessive stress, overheating, and premature wear. Avoiding sudden and frequent acceleration or deceleration, as well as preventing overloading or continuous operation near the motor’s maximum capacity, can extend its lifespan.

5. Alignment and Vibration Analysis:

Proper alignment of gear motor components, such as gears, couplings, and shafts, is crucial for smooth and efficient operation. Misalignment can lead to increased friction, noise, and premature wear. Regularly checking and adjusting alignment, as well as performing vibration analysis, can help identify any misalignment or excessive vibration that may indicate underlying issues. Addressing alignment and vibration problems promptly can prevent further damage and maximize the motor’s longevity.

6. Preventive Maintenance and Regular Inspections:

Implementing a preventive maintenance program is essential for gear motors. This includes establishing a schedule for routine inspections, lubrication, and cleaning, as well as conducting periodic performance tests and measurements. Following the manufacturer’s guidelines and recommendations for maintenance tasks, such as belt tension checks, bearing replacements, or gear inspections, can help identify and address potential issues before they escalate into major failures.

By adhering to these maintenance requirements and best practices, the longevity of gear motors can be maximized. Regular maintenance, proper lubrication, load optimization, temperature control, and timely repairs or replacements of worn components contribute to the reliable operation and extended lifespan of gear motors.

gear motor

How do gear motors compare to other types of motors in terms of power and efficiency?

Gear motors can be compared to other types of motors in terms of power output and efficiency. The choice of motor type depends on the specific application requirements, including the desired power level, efficiency, speed range, torque characteristics, and control capabilities. Here’s a detailed explanation of how gear motors compare to other types of motors in terms of power and efficiency:

1. Gear Motors:

Gear motors combine a motor with a gear mechanism to deliver increased torque output and improved control. The gear reduction enables gear motors to provide higher torque while reducing the output speed. This makes gear motors suitable for applications that require high torque, precise positioning, and controlled movements. However, the gear reduction process introduces mechanical losses, which can slightly reduce the overall efficiency of the system compared to direct-drive motors. The efficiency of gear motors can vary depending on factors such as gear quality, lubrication, and maintenance.

2. Direct-Drive Motors:

Direct-drive motors, also known as gearless or integrated motors, do not use a gear mechanism. They provide a direct connection between the motor and the load, eliminating the need for gear reduction. Direct-drive motors offer advantages such as high efficiency, low maintenance, and compact design. Since there are no gears involved, direct-drive motors experience fewer mechanical losses and can achieve higher overall efficiency compared to gear motors. However, direct-drive motors may have limitations in terms of torque output and speed range, and they may require more complex control systems to achieve precise positioning.

3. Stepper Motors:

Stepper motors are a type of gear motor that excels in precise positioning applications. They operate by converting electrical pulses into incremental steps of movement. Stepper motors offer excellent positional accuracy and control. They are capable of precise positioning and can hold a position without power. Stepper motors have relatively high torque at low speeds, making them suitable for applications that require precise control and positioning, such as robotics, 3D printers, and CNC machines. However, stepper motors may have lower overall efficiency compared to direct-drive motors due to the additional power required to overcome the detents between steps.

4. Servo Motors:

Servo motors are another type of gear motor known for their high torque, high speed, and excellent positional accuracy. Servo motors combine a motor, a feedback device (such as an encoder), and a closed-loop control system. They offer precise control over position, speed, and torque. Servo motors are widely used in applications that require accurate and responsive positioning, such as industrial automation, robotics, and camera pan-tilt systems. Servo motors can achieve high efficiency when properly optimized and controlled but may have slightly lower efficiency compared to direct-drive motors due to the additional complexity of the control system.

5. Efficiency Considerations:

When comparing power and efficiency among different motor types, it’s important to consider the specific requirements and operating conditions of the application. Factors such as load characteristics, speed range, duty cycle, and control requirements influence the overall efficiency of the motor system. While direct-drive motors generally offer higher efficiency due to the absence of mechanical losses from gears, gear motors can deliver higher torque output and enhanced control capabilities. The efficiency of gear motors can be optimized through proper gear selection, lubrication, and maintenance practices.

In summary, gear motors offer increased torque and improved control compared to direct-drive motors. However, gear reduction introduces mechanical losses that can slightly impact the overall efficiency of the system. Direct-drive motors, on the other hand, provide high efficiency and compact design but may have limitations in terms of torque and speed range. Stepper motors and servo motors, both types of gear motors, excel in precise positioning applications but may have slightly lower efficiency compared to direct-drive motors. The selection of the most suitable motor type depends on the specific requirements of the application, balancing power, efficiency, speed range, and control capabilities.

gear motor

Can you explain the advantages of using gear motors in various mechanical systems?

Gear motors offer several advantages when utilized in various mechanical systems. Their unique characteristics make them well-suited for applications that require controlled power transmission, precise speed control, and torque amplification. Here’s a detailed explanation of the advantages of using gear motors:

1. Torque Amplification:

One of the key advantages of gear motors is their ability to amplify torque. By using different gear ratios, gear motors can increase or decrease the output torque from the motor. This torque amplification is crucial in applications that require high torque output, such as lifting heavy loads or operating machinery with high resistance. Gear motors allow for efficient power transmission, enabling the system to handle demanding tasks effectively.

2. Speed Control:

Gear motors provide precise speed control, allowing for accurate and controlled movement in mechanical systems. By selecting the appropriate gear ratio, the rotational speed of the output shaft can be adjusted to match the requirements of the application. This speed control capability ensures that the mechanical system operates at the desired speed, whether it needs to be fast or slow. Gear motors are commonly used in applications such as conveyors, robotics, and automated machinery, where precise speed control is essential.

3. Directional Control:

Another advantage of gear motors is their ability to control the rotational direction of the output shaft. By using different types of gears, such as spur gears, bevel gears, or worm gears, the direction of rotation can be easily changed. This directional control is beneficial in applications that require bidirectional movement, such as in actuators, robotic arms, and conveyors. Gear motors offer reliable and efficient directional control, contributing to the versatility and functionality of mechanical systems.

4. Efficiency and Power Transmission:

Gear motors are known for their high efficiency in power transmission. The gear system helps distribute the load across multiple gears, reducing the strain on individual components and minimizing power losses. This efficient power transmission ensures that the mechanical system operates with optimal energy utilization and minimizes wasted power. Gear motors are designed to provide reliable and consistent power transmission, resulting in improved overall system efficiency.

5. Compact and Space-Saving Design:

Gear motors are compact in size and offer a space-saving solution for mechanical systems. By integrating the motor and gear system into a single unit, gear motors eliminate the need for additional components and reduce the overall footprint of the system. This compact design is especially beneficial in applications with limited space constraints, allowing for more efficient use of available space while still delivering the necessary power and functionality.

6. Durability and Reliability:

Gear motors are designed to be robust and durable, capable of withstanding demanding operating conditions. The gear system helps distribute the load, reducing the stress on individual gears and increasing overall durability. Additionally, gear motors are often constructed with high-quality materials and undergo rigorous testing to ensure reliability and longevity. This makes gear motors well-suited for continuous operation in industrial and commercial applications, where reliability is crucial.

By leveraging the advantages of torque amplification, speed control, directional control, efficiency, compact design, durability, and reliability, gear motors provide a reliable and efficient solution for various mechanical systems. They are widely used in industries such as robotics, automation, manufacturing, automotive, and many others, where precise and controlled mechanical power transmission is essential.

China Good quality Three Phase AC Gear Motor 120W 90mm Gear Motor   vacuum pump adapter	China Good quality Three Phase AC Gear Motor 120W 90mm Gear Motor   vacuum pump adapter
editor by CX 2024-04-03

China factory Three Phase 4kw AC Electric Induction Gear Motor vacuum pump adapter

Product Description

Product Description

IE3 Series Three phase AC Motor
1) IE3 series motors are totally enclosed fan cooling 3 phase squirrel cage induction motor.

2) IE3 series motors have outstanding performance, such as high efficiency, energy saving, high starting torque, low noise, little
vibration, reliable operation and easy maintenance, etc.

3) It is widely used in many places where do not have combustible, explosive or corrosive gas, and without special requirements,
such as driving equipments of various machineries such as: machine tools, blowers, pumps, air compressors, transporters,
agricultural and food processing.

4) The Y connection for moor of 3kw and below; and CHINAMFG connection for 4kw and above.

Weiye is proud to be celebrating our 15th anniversary this year. Over this time the company has grown from a small family run business to a large international company with hundreds of millions of dollars in annual revenue.CHINAMFG Motor Co., Ltd. is a professional manufacturer and seller of various of electric motors, which previous company HangZhou CHINAMFG Electric Co., Ltd, was found in 1999. And upgraded to China CHINAMFG Motor Co., Ltd. in 2571, with registered capital of 50 million RMB. In 2013, a new plant was completed and the production started in the meantime. The new plant covers an area of 35000 square meters, located in Xihu (West Lake) Dis. industrial area. Owns more than 200 sets advanced processing and testing equipment, and 500 staffs, including nearly 100 engineer and technician, 20% of them are senior titled.

 

Weiye received great harvest from domestic and overseas market. We have developed several CHINAMFG brands, such as China Weiye, ZHangZhoug Wanshida, ZheZheJiang CHINAMFG and HangZhou Xima. We produce various three-phase asynchronous motors Y, Y2, YX3, YEJ2, YVF2, YD2, YCT, ML, MY, YS, YC, YY, MS aluminum motors, YL series single-phase motors, YD series multi-speed motors, variable speed motors, YB2, YB3 series explosion-proof motors, High efficiency motors, etc.

Weiye has over 500 distributors in China, and export to East Asia, Japan, Middle East, Europe and Africa, the high quality products bring us good credit and high reputation. As CHINAMFG always produce according to ISO-9001 strictly, and offer customers high quality products. Now the update plant and capacity allow us to have better control in incoming inspection, producing process, transportation, sales and after-sales services. CHINAMFG is committed to innovation and is constantly working to provide the next breakthrough in electric motors. We are willing to cooperate with you to create the flourishing future.

FAQ

FAQ

Q: Are you Factory or Trading Company?
A: We are Factory. That has been focusing on motors and accessories for more than 20 years.

Q: What is your warranty?
A: Our warranty is One Year. Any parts damaged within warranty. We will provide new 1 for free and supply the solution within 2
workdays.

Q: What kind of motor can you supply?
A: Single Phase Motor, Three Phase Motor, Adjustable Speed Regulating Motor, Explosion Proof Motor.

Q: Do you offer OEM Service?
A: Yes. We offer OEM/ODM service.

Q: What is your lead Time?
A: Usually 7 days. Precise Time depend on Qty.

/* January 22, 2571 19:08:37 */!function(){function s(e,r){var a,o={};try{e&&e.split(“,”).forEach(function(e,t){e&&(a=e.match(/(.*?):(.*)$/))&&1

Application: Industrial
Speed: Low Speed
Number of Stator: Three-Phase
Function: Driving
Casing Protection: Protection Type
Number of Poles: 2/4/6/8/10
Samples:
US$ 1005/PC
1 PC(Min.Order)

|

Customization:
Available

|

gear motor

Are there innovations or emerging technologies in the field of gear motor design?

Yes, there are several innovations and emerging technologies in the field of gear motor design. These advancements aim to improve the performance, efficiency, compactness, and reliability of gear motors. Here are some notable innovations and emerging technologies in gear motor design:

1. Miniaturization and Compact Design:

Advancements in manufacturing techniques and materials have enabled the miniaturization of gear motors without compromising their performance. Gear motors with compact designs are highly sought after in applications where space is limited, such as robotics, medical devices, and consumer electronics. Innovative approaches like micro-gear motors and integrated motor-gear units are being developed to achieve smaller form factors while maintaining high torque and efficiency.

2. High-Efficiency Gearing:

New gear designs focus on improving efficiency by reducing friction and mechanical losses. Advanced gear manufacturing techniques, such as precision machining and 3D printing, allow for the creation of intricate gear tooth profiles that optimize power transmission and minimize losses. Additionally, the use of high-performance materials, coatings, and lubricants helps reduce friction and wear, improving overall gear motor efficiency.

3. Magnetic Gearing:

Magnetic gearing is an emerging technology that replaces traditional mechanical gears with magnetic fields to transmit torque. It utilizes the interaction of permanent magnets to transfer power, eliminating the need for physical gear meshing. Magnetic gearing offers advantages such as high efficiency, low noise, compactness, and maintenance-free operation. While still being developed and refined, magnetic gearing holds promise for various applications, including gear motors.

4. Integrated Electronics and Controls:

Gear motor designs are incorporating integrated electronics and controls to enhance performance and functionality. Integrated motor drives and controllers simplify system integration, reduce wiring complexity, and allow for advanced control features. These integrated solutions offer precise speed and torque control, intelligent feedback mechanisms, and connectivity options for seamless integration into automation systems and IoT (Internet of Things) platforms.

5. Smart and Condition Monitoring Capabilities:

New gear motor designs incorporate smart features and condition monitoring capabilities to enable predictive maintenance and optimize performance. Integrated sensors and monitoring systems can detect abnormal operating conditions, track performance parameters, and provide real-time feedback for proactive maintenance and troubleshooting. This helps prevent unexpected failures, extend the lifespan of gear motors, and improve overall system reliability.

6. Energy-Efficient Motor Technologies:

Gear motor design is influenced by advancements in energy-efficient motor technologies. Brushless DC (BLDC) motors and synchronous reluctance motors (SynRM) are gaining popularity due to their higher efficiency, better power density, and improved controllability compared to traditional brushed DC and induction motors. These motor technologies, when combined with optimized gear designs, contribute to overall system energy savings and performance improvements.

These are just a few examples of the innovations and emerging technologies in gear motor design. The field is continuously evolving, driven by the need for more efficient, compact, and reliable motion control solutions in various industries. Gear motor manufacturers and researchers are actively exploring new materials, manufacturing techniques, control strategies, and system integration approaches to meet the evolving demands of modern applications.

gear motor

Are there environmental benefits to using gear motors in certain applications?

Yes, there are several environmental benefits associated with the use of gear motors in certain applications. Gear motors offer advantages that can contribute to increased energy efficiency, reduced resource consumption, and lower environmental impact. Here’s a detailed explanation of the environmental benefits of using gear motors:

1. Energy Efficiency:

Gear motors can improve energy efficiency in various ways:

  • Torque Conversion: Gear reduction allows gear motors to deliver higher torque output while operating at lower speeds. This enables the motor to perform tasks that require high torque, such as lifting heavy loads or driving machinery with high inertia, more efficiently. By matching the motor’s power characteristics to the load requirements, gear motors can operate closer to their peak efficiency, minimizing energy waste.
  • Controlled Speed: Gear reduction provides finer control over the motor’s rotational speed. This allows for more precise speed regulation, reducing the likelihood of energy overconsumption and optimizing energy usage.

2. Reduced Resource Consumption:

The use of gear motors can lead to reduced resource consumption and environmental impact:

  • Smaller Motor Size: Gear reduction allows gear motors to deliver higher torque with smaller, more compact motors. This reduction in motor size translates to reduced material and resource requirements during manufacturing. It also enables the use of smaller and lighter equipment, which can contribute to energy savings during operation and transportation.
  • Extended Motor Lifespan: The gear mechanism in gear motors helps reduce the load and stress on the motor itself. By distributing the load more evenly, gear motors can help extend the lifespan of the motor, reducing the need for frequent replacements and the associated resource consumption.

3. Noise Reduction:

Gear motors can contribute to a quieter and more environmentally friendly working environment:

  • Noise Dampening: Gear reduction can help reduce the noise generated by the motor. The gear mechanism acts as a noise dampener, absorbing and dispersing vibrations and reducing overall noise emission. This is particularly beneficial in applications where noise reduction is important, such as residential areas, offices, or noise-sensitive environments.

4. Precision and Control:

Gear motors offer enhanced precision and control, which can lead to environmental benefits:

  • Precise Positioning: Gear motors, especially stepper motors and servo motors, provide precise positioning capabilities. This accuracy allows for more efficient use of resources, minimizing waste and optimizing the performance of machinery or systems.
  • Optimized Control: Gear motors enable precise control over speed, torque, and movement. This control allows for better optimization of processes, reducing energy consumption and minimizing unnecessary wear and tear on equipment.

In summary, using gear motors in certain applications can have significant environmental benefits. Gear motors offer improved energy efficiency, reduced resource consumption, noise reduction, and enhanced precision and control. These advantages contribute to lower energy consumption, reduced environmental impact, and a more sustainable approach to power transmission and control. When selecting motor systems for specific applications, considering the environmental benefits of gear motors can help promote energy efficiency and sustainability.

gear motor

Can you explain the advantages of using gear motors in various mechanical systems?

Gear motors offer several advantages when utilized in various mechanical systems. Their unique characteristics make them well-suited for applications that require controlled power transmission, precise speed control, and torque amplification. Here’s a detailed explanation of the advantages of using gear motors:

1. Torque Amplification:

One of the key advantages of gear motors is their ability to amplify torque. By using different gear ratios, gear motors can increase or decrease the output torque from the motor. This torque amplification is crucial in applications that require high torque output, such as lifting heavy loads or operating machinery with high resistance. Gear motors allow for efficient power transmission, enabling the system to handle demanding tasks effectively.

2. Speed Control:

Gear motors provide precise speed control, allowing for accurate and controlled movement in mechanical systems. By selecting the appropriate gear ratio, the rotational speed of the output shaft can be adjusted to match the requirements of the application. This speed control capability ensures that the mechanical system operates at the desired speed, whether it needs to be fast or slow. Gear motors are commonly used in applications such as conveyors, robotics, and automated machinery, where precise speed control is essential.

3. Directional Control:

Another advantage of gear motors is their ability to control the rotational direction of the output shaft. By using different types of gears, such as spur gears, bevel gears, or worm gears, the direction of rotation can be easily changed. This directional control is beneficial in applications that require bidirectional movement, such as in actuators, robotic arms, and conveyors. Gear motors offer reliable and efficient directional control, contributing to the versatility and functionality of mechanical systems.

4. Efficiency and Power Transmission:

Gear motors are known for their high efficiency in power transmission. The gear system helps distribute the load across multiple gears, reducing the strain on individual components and minimizing power losses. This efficient power transmission ensures that the mechanical system operates with optimal energy utilization and minimizes wasted power. Gear motors are designed to provide reliable and consistent power transmission, resulting in improved overall system efficiency.

5. Compact and Space-Saving Design:

Gear motors are compact in size and offer a space-saving solution for mechanical systems. By integrating the motor and gear system into a single unit, gear motors eliminate the need for additional components and reduce the overall footprint of the system. This compact design is especially beneficial in applications with limited space constraints, allowing for more efficient use of available space while still delivering the necessary power and functionality.

6. Durability and Reliability:

Gear motors are designed to be robust and durable, capable of withstanding demanding operating conditions. The gear system helps distribute the load, reducing the stress on individual gears and increasing overall durability. Additionally, gear motors are often constructed with high-quality materials and undergo rigorous testing to ensure reliability and longevity. This makes gear motors well-suited for continuous operation in industrial and commercial applications, where reliability is crucial.

By leveraging the advantages of torque amplification, speed control, directional control, efficiency, compact design, durability, and reliability, gear motors provide a reliable and efficient solution for various mechanical systems. They are widely used in industries such as robotics, automation, manufacturing, automotive, and many others, where precise and controlled mechanical power transmission is essential.

China factory Three Phase 4kw AC Electric Induction Gear Motor   vacuum pump adapter	China factory Three Phase 4kw AC Electric Induction Gear Motor   vacuum pump adapter
editor by CX 2024-04-03

China Good quality ZD Single Phase, Three Phase Horizonal/Vertical Small AC Gear Motor For Packing Machine vacuum pump brakes

Product Description

Model Selection

ZD Leader has a wide range of micro motor production lines in the industry, including DC Motor , AC Motor , B rushless Motor , P lanetary Gear Motor , D rum Motor, Planetary Gearbox, RV Reducer and Harmonic Gearbox etc. Through technical innovation and customization, we help you create outstanding application systems and provide flexible solutions for various industrial automation situations.

• Model Selection
Our professional sales representive and technical team will choose the right model and transmission solutions for your usage depend on your specific parameters.

• Drawing Request

If you need more product parameters, catalogues, CAD or 3D drawings, please contact us.
 

• On Your Need

We can modify standard products or customize them to meet your specific needs.

Detailed Photos

Product Description

Features:
1.Basic stctrue:ZH(Horizonal),ZV(Vertical)
2.Output:100W,200W,400W,750W,1100W,1500W,2200W,3700W
3.Gear ratio:3,5,10…1800
4.Motor basic data:
S:3-phase motor,220-240/380-415V,50/60Hz
C:1-phase motor,220v,50-50Hz
E:1-phase motor,110v,50/60Hz
DV:Double Voltage motor,110/220V,50Hz/60Hz
Z:Light type duty
5.Brake unit: B: DC90V brake unit    YB: With rsisase brake unit

Product Parameters

 

Item 3-phase motor 1-phase motor
Protection IP54 with alum alloy terminal box,and other is IP20
Frame material Alum alloy for 100-2200W Frame,Alum alloy for 1#,2#,3#gear case,4#,5#,6# cast iron for others
Duty Continuous running
INS.Class B/F
Environment Temp:-10—+40centigrade
Humidity:<90%
Voltage 220V-240V/380-415V,50/60Hz 110V/50/60Hz,220V/50/60Hz
Pole 4P(6P) 4P(6P)
Height <1000m
Starting Direct start 0.1-.02kw capacitor
0.4-1.5kw double capacitors
Standard GB755/IEC-60034

Main parts notes:

Parts name Notes
Gearbox The output shaft diameter of gearbox 1#,2#,3# are 18,22,28mm separately.the material of gearbox is alum alloy.4#,5#,6# are 32,40,50 respectively.Gearbox is made of cast iron.
Gear piece The material 40Cr mixes to HB280,then dealed with high frequency quencher HRC50.Gear should be processed by milling with high precision.The class is 6.
Gear shaft The material 20CrMnTi will be changed into HRC60 through processing of cementite quencher.Gear shaft will be processed with gear hobbing.Precision class is 6.
Motor shaft The material 40Cr mixes to HB280,then dealed with high frequency quencher HRC54.Finally,gear is cut for the second.motor shaft will be processed with gear hobbing.Precision class is 5-6.
Ball bearing We adopt tight bearing with high precision,to make sure longterm running lift.
Oil seal Gear shaft gives priorith to enduring high temp,avoiding oil infiltration.
Terminal box Two type.one is al alloy,which equips good capability of waterproof and dustproof.Protection grade is IP54.The other is steel case with deft structure.Protection grade is IP20.

Gear of small series:
1.The material of rotor is 40Cr,quench to HRC50-55 after rough rolling,two times hard cutting,the gear precision can arrive ISO class6-7.
2.The material of shafe gear is 20CrMnTi,quench to HRC58-61 after rough rolling,two times hard cutting,the gear precision can arrive ISO class6-7.
2.The material of plate gear is 40Cr,quench to HRC48-51 after rough rolling,grind,the precision can arrive ISO class6-7.
 
Brake series:
1.Economical and compact.
2.High pressure-resistance,good insulation,insulation class F,can work in different kinds of ambient.
3.Long life,adopting abrasion-resistance lead-free,non asbestos friction plate,making sure the long life.
4.It”s selective of assembling hole diameter and easy assembling.
5.Multiple assembling way meets different customers.

Other Related Products

Click here to find what you are looking for:

Company Profile

 

FAQ

Q: What’re your main products?
A: We currently produce Brushed Dc Motors, Brushed Dc Gear Motors, Planetary Dc Gear Motors, Brushless Dc Motors, Stepper motors, Ac Motors and High Precision Planetary Gear Box etc. You can check the specifications for above motors on our website and you can email us to recommend needed motors per your specification too.

Q: How to select a suitable motor?
A:If you have motor pictures or drawings to show us, or you have detailed specs like voltage, speed, torque, motor size, working mode of the motor, needed lifetime and noise level etc, please do not hesitate to let us know, then we can recommend suitable motor per your request accordingly.

Q: Do you have a customized service for your standard motors?
A: Yes, we can customize per your request for the voltage, speed, torque and shaft size/shape. If you need additional wires/cables soldered on the terminal or need to add connectors, or capacitors or EMC we can make it too.

Q: Do you have an individual design service for motors?
A: Yes, we would like to design motors individually for our customers, but it may need some mold developing cost and design charge.

Q: What’s your lead time?
A: Generally speaking, our regular standard product will need 15-30days, a bit longer for customized products. But we are very flexible on the lead time, it will depend on the specific orders.

/* January 22, 2571 19:08:37 */!function(){function s(e,r){var a,o={};try{e&&e.split(“,”).forEach(function(e,t){e&&(a=e.match(/(.*?):(.*)$/))&&1

Application: Moving Machinery
Operating Speed: Constant Speed
Power Source: AC Motor
Casing Protection: Closed Type
Number of Poles: 4
Certification: ISO9001, CCC
Customization:
Available

|

gear motor

How is the efficiency of a gear motor measured, and what factors can affect it?

The efficiency of a gear motor is a measure of how effectively it converts electrical input power into mechanical output power. It indicates the motor’s ability to minimize losses and maximize its energy conversion efficiency. The efficiency of a gear motor is typically measured using specific methods, and several factors can influence it. Here’s a detailed explanation:

Measuring Efficiency:

The efficiency of a gear motor is commonly measured by comparing the mechanical output power (Pout) to the electrical input power (Pin). The formula to calculate efficiency is:

Efficiency = (Pout / Pin) * 100%

The mechanical output power can be determined by measuring the torque (T) produced by the motor and the rotational speed (ω) at which it operates. The formula for mechanical power is:

Pout = T * ω

The electrical input power can be measured by monitoring the current (I) and voltage (V) supplied to the motor. The formula for electrical power is:

Pin = V * I

By substituting these values into the efficiency formula, the efficiency of the gear motor can be calculated as a percentage.

Factors Affecting Efficiency:

Several factors can influence the efficiency of a gear motor. Here are some notable factors:

  • Friction and Mechanical Losses: Friction between moving parts, such as gears and bearings, can result in mechanical losses and reduce the overall efficiency of the gear motor. Minimizing friction through proper lubrication, high-quality components, and efficient design can help improve efficiency.
  • Gearing Efficiency: The design and quality of the gears used in the gear motor can impact its efficiency. Gear trains can introduce mechanical losses due to gear meshing, misalignment, or backlash. Using well-designed gears with proper tooth profiles and minimizing gear train losses can improve efficiency.
  • Motor Type and Construction: Different types of motors (e.g., brushed DC, brushless DC, AC induction) have varying efficiency characteristics. Motor construction, such as the quality of magnetic materials, winding resistance, and rotor design, can also affect efficiency. Choosing motors with higher efficiency ratings can improve overall gear motor efficiency.
  • Electrical Losses: Electrical losses, such as resistive losses in motor windings or in the motor drive circuitry, can reduce efficiency. Minimizing resistance, optimizing motor drive electronics, and using efficient control algorithms can help mitigate electrical losses.
  • Load Conditions: The operating conditions and load characteristics placed on the gear motor can impact its efficiency. Heavy loads, high speeds, or frequent acceleration and deceleration can increase losses and reduce efficiency. Matching the gear motor’s specifications to the application requirements and optimizing load conditions can improve efficiency.
  • Temperature: Elevated temperatures can significantly affect the efficiency of a gear motor. Excessive heat can increase resistive losses, reduce lubrication effectiveness, and affect the magnetic properties of motor components. Proper cooling and thermal management techniques are essential to maintain optimal efficiency.

By considering these factors and implementing measures to minimize losses and optimize performance, the efficiency of a gear motor can be enhanced. Manufacturers often provide efficiency specifications for gear motors, allowing users to select motors that best meet their efficiency requirements for specific applications.

gear motor

How does the voltage and power rating of a gear motor impact its suitability for different tasks?

The voltage and power rating of a gear motor are important factors that influence its suitability for different tasks. These specifications determine the motor’s electrical characteristics and its ability to perform specific tasks effectively. Here’s a detailed explanation of how voltage and power rating impact the suitability of a gear motor for different tasks:

1. Voltage Rating:

The voltage rating of a gear motor refers to the electrical voltage it requires to operate optimally. Here’s how the voltage rating affects suitability:

  • Compatibility with Power Supply: The gear motor’s voltage rating must match the available power supply. Using a motor with a voltage rating that is too high or too low for the power supply can lead to improper operation or damage to the motor.
  • Electrical Safety: Adhering to the specified voltage rating ensures electrical safety. Using a motor with a higher voltage rating than recommended can pose safety hazards, while using a motor with a lower voltage rating may result in inadequate performance.
  • Application Flexibility: Different tasks or applications may have specific voltage requirements. For example, low-voltage gear motors are commonly used in battery-powered devices or applications with low-power requirements, while high-voltage gear motors are suitable for industrial applications or tasks that require higher power output.

2. Power Rating:

The power rating of a gear motor indicates its ability to deliver mechanical power. It is typically specified in units of watts (W) or horsepower (HP). The power rating impacts the suitability of a gear motor in the following ways:

  • Load Capacity: The power rating determines the maximum load that a gear motor can handle. Motors with higher power ratings are capable of driving heavier loads or handling tasks that require more torque.
  • Speed and Torque: The power rating affects the motor’s speed and torque characteristics. Motors with higher power ratings generally offer higher speeds and greater torque output, making them suitable for applications that require faster operation or the ability to overcome higher resistance or loads.
  • Efficiency and Energy Consumption: The power rating is related to the motor’s efficiency and energy consumption. Higher power-rated motors may be more efficient, resulting in lower energy losses and reduced operating costs over time.
  • Thermal Considerations: Motors with higher power ratings may generate more heat during operation. It is crucial to consider the motor’s power rating in relation to its thermal management capabilities to prevent overheating and ensure long-term reliability.

Considerations for Task Suitability:

When selecting a gear motor for a specific task, it is important to consider the following factors in relation to the voltage and power rating:

  • Required Torque and Load: Assess the torque and load requirements of the task to ensure that the gear motor’s power rating is sufficient to handle the expected load without being overloaded.
  • Speed and Precision: Consider the desired speed and precision of the task. Motors with higher power ratings generally offer better speed control and accuracy.
  • Power Supply Availability: Evaluate the availability and compatibility of the power supply with the gear motor’s voltage rating. Ensure that the power supply can provide the required voltage for the motor’s optimal operation.
  • Environmental Factors: Consider any specific environmental factors, such as temperature or humidity, that may impact the gear motor’s performance. Ensure that the motor’s voltage and power ratings are suitable for the intended operating conditions.

In summary, the voltage and power rating of a gear motor have significant implications for its suitability in different tasks. The voltage rating determines compatibility with the power supply and ensures electrical safety, while the power rating influences load capacity, speed, torque, efficiency, and thermal considerations. When choosing a gear motor, it is crucial to carefully evaluate the task requirements and consider the voltage and power rating in relation to factors such as torque, speed, power supply availability, and environmental conditions.

gear motor

In which industries are gear motors commonly used, and what are their primary applications?

Gear motors find widespread use in various industries due to their versatility, reliability, and ability to provide controlled mechanical power. They are employed in a wide range of applications that require precise power transmission and speed control. Here’s a detailed explanation of the industries where gear motors are commonly used and their primary applications:

1. Robotics and Automation:

Gear motors play a crucial role in robotics and automation industries. They are used in robotic arms, conveyor systems, automated assembly lines, and other robotic applications. Gear motors provide the required torque, speed control, and directional control necessary for the precise movements and operations of robots. They enable accurate positioning, gripping, and manipulation tasks in industrial and commercial automation settings.

2. Automotive Industry:

The automotive industry extensively utilizes gear motors in various applications. They are used in power windows, windshield wipers, HVAC systems, seat adjustment mechanisms, and many other automotive components. Gear motors provide the necessary torque and speed control for these systems, enabling smooth and efficient operation. Additionally, gear motors are also utilized in electric and hybrid vehicles for powertrain applications.

3. Manufacturing and Machinery:

Gear motors find wide application in the manufacturing and machinery sector. They are used in conveyor belts, packaging equipment, material handling systems, industrial mixers, and other machinery. Gear motors provide reliable power transmission, precise speed control, and torque amplification, ensuring efficient and synchronized operation of various manufacturing processes and machinery.

4. HVAC and Building Systems:

In heating, ventilation, and air conditioning (HVAC) systems, gear motors are commonly used in damper actuators, control valves, and fan systems. They enable precise control of airflow, temperature, and pressure, contributing to energy efficiency and comfort in buildings. Gear motors also find applications in automatic doors, blinds, and gate systems, providing reliable and controlled movement.

5. Marine and Offshore Industry:

Gear motors are extensively used in the marine and offshore industry, particularly in propulsion systems, winches, and cranes. They provide the required torque and speed control for various marine operations, including steering, anchor handling, cargo handling, and positioning equipment. Gear motors in marine applications are designed to withstand harsh environments and provide reliable performance under demanding conditions.

6. Renewable Energy Systems:

The renewable energy sector, including wind turbines and solar tracking systems, relies on gear motors for efficient power generation. Gear motors are used to adjust the rotor angle and position in wind turbines, optimizing their performance in different wind conditions. In solar tracking systems, gear motors enable the precise movement and alignment of solar panels to maximize sunlight capture and energy production.

7. Medical and Healthcare:

Gear motors have applications in the medical and healthcare industry, including in medical equipment, laboratory devices, and patient care systems. They are used in devices such as infusion pumps, ventilators, surgical robots, and diagnostic equipment. Gear motors provide precise control and smooth operation, ensuring accurate dosing, controlled movements, and reliable functionality in critical medical applications.

These are just a few examples of the industries where gear motors are commonly used. Their versatility and ability to provide controlled mechanical power make them indispensable in numerous applications requiring torque amplification, speed control, directional control, and load distribution. The reliable and efficient power transmission offered by gear motors contributes to the smooth and precise operation of machinery and systems in various industries.

China Good quality ZD Single Phase, Three Phase Horizonal/Vertical Small AC Gear Motor For Packing Machine   vacuum pump brakesChina Good quality ZD Single Phase, Three Phase Horizonal/Vertical Small AC Gear Motor For Packing Machine   vacuum pump brakes
editor by CX 2024-03-27

China Best Sales Three Phase 90W Speed Control AC Gear Reduction Geared Motor a/c vacuum pump

Product Description

 

Product Description

MOTOR FRAME SIZE 60 mm / 70mm / 80mm / 90mm / 104mm
MOTOR TYPE INDUCTION MOTOR / REVERSIBLE MOTOR / TORQUE MOTOR / SPEED CONTROL MOTOR
SERIES K series
OUTPUT POWER 3 W / 6W / 10W / 15W / 25W / 40W / 60W / 90W / 120 W / 140W / 180W / 200W (can be customized)
OUTPUT SHAFT 8mm / 10mm / 12mm / 15mm ; round shaft, D-cut shaft, key-way shaft (can be customized)
Voltage type Single phase 100-120V 50/60Hz 4P Single phase 200-240V 50/60Hz 4P
Three phase 200-240V 50/60Hz Three phase 380-415V 50/60Hz 4P
Three phase 440-480V 60Hz 4P Three phase 200-240/380-415/440-480V 50/60/60Hz 4P
Accessories Terminal box type / with Fan / thermal protector / electromagnetic brake
Above 60 W, all assembled with fan
GEARBOX FRAME SIZE 60 mm / 70mm / 80mm / 90mm / 104mm
GEAR RATIO 3G-300G
GEARBOX TYPE PARALLEL SHAFT GEARBOX AND STRENGTH TYPE
Right angle hollow worm shaft Right angle spiral bevel hollow shaft L type hollow shaft
Right angle CHINAMFG worm shaft Right angle spiral bevel CHINAMFG shaft L type CHINAMFG shaft
K2 series air tightness improved type
Certification CCC CE ISO9001 CQC

other product

 

Certifications

 

Packaging & Shipping

 

Company Profile

FAQ

Q: How to select a suitable motor or gearbox?
A:If you have motor pictures or drawings to show us, or you have detailed specifications, such as, voltage, speed, torque, motor size, working mode of the motor, needed lifetime and noise level etc, please do not hesitate to let us know, then we can recommend suitable motor per your request accordingly.

Q: Do you have a customized service for your standard motors or gearboxes?
A: Yes, we can customize per your request for the voltage, speed, torque and shaft size/shape. If you need additional wires/cables soldered on the terminal or need to add connectors, or capacitors or EMC we can make it too.

Q: Do you have an individual design service for motors?
A: Yes, we would like to design motors individually for our customers, but some kind of molds are necessory to be developped which may need exact cost and design charging.

Q: What’s your lead time?
A: Generally speaking, our regular standard product will need 15-30days, a bit longer for customized products. But we are very flexible on the lead time, it will depend on the specific orders.
 

Application: Machine Tool
Speed: High Speed
Number of Stator: Three-Phase
Samples:
US$ 50/Piece
1 Piece(Min.Order)

|

Order Sample

Customization:
Available

|

.shipping-cost-tm .tm-status-off{background: none;padding:0;color: #1470cc}

Shipping Cost:

Estimated freight per unit.







about shipping cost and estimated delivery time.
Payment Method:







 

Initial Payment



Full Payment
Currency: US$
Return&refunds: You can apply for a refund up to 30 days after receipt of the products.

gear motor

What are the maintenance requirements for gear motors, and how can longevity be maximized?

Gear motors, like any mechanical system, require regular maintenance to ensure optimal performance and longevity. Proper maintenance practices help prevent failures, minimize downtime, and extend the lifespan of gear motors. Here are some maintenance requirements for gear motors and ways to maximize their longevity:

1. Lubrication:

Regular lubrication is essential for gear motors to reduce friction, wear, and heat generation. The gears, bearings, and other moving parts should be properly lubricated according to the manufacturer’s recommendations. Lubricants should be selected based on the motor’s specifications and operating conditions. Regular inspection and replenishment of lubricants, as well as periodic oil or grease changes, should be performed to maintain optimal lubrication levels and ensure long-lasting performance.

2. Inspection and Cleaning:

Regular inspection and cleaning of gear motors are crucial for identifying any signs of wear, damage, or contamination. Inspecting the gears, bearings, shafts, and connections can help detect any abnormalities or misalignments. Cleaning the motor’s exterior and ventilation channels to remove dust, debris, or moisture buildup is also important in preventing malfunctions and maintaining proper cooling. Any loose or damaged components should be repaired or replaced promptly.

3. Temperature and Environmental Considerations:

Monitoring and controlling the temperature and environmental conditions surrounding gear motors can significantly impact their longevity. Excessive heat can degrade lubricants, damage insulation, and lead to premature component failure. Ensuring proper ventilation, heat dissipation, and avoiding overloading the motor can help manage temperature effectively. Similarly, protecting gear motors from moisture, dust, chemicals, and other environmental contaminants is vital to prevent corrosion and damage.

4. Load Monitoring and Optimization:

Monitoring and optimizing the load placed on gear motors can contribute to their longevity. Operating gear motors within their specified load and speed ranges helps prevent excessive stress, overheating, and premature wear. Avoiding sudden and frequent acceleration or deceleration, as well as preventing overloading or continuous operation near the motor’s maximum capacity, can extend its lifespan.

5. Alignment and Vibration Analysis:

Proper alignment of gear motor components, such as gears, couplings, and shafts, is crucial for smooth and efficient operation. Misalignment can lead to increased friction, noise, and premature wear. Regularly checking and adjusting alignment, as well as performing vibration analysis, can help identify any misalignment or excessive vibration that may indicate underlying issues. Addressing alignment and vibration problems promptly can prevent further damage and maximize the motor’s longevity.

6. Preventive Maintenance and Regular Inspections:

Implementing a preventive maintenance program is essential for gear motors. This includes establishing a schedule for routine inspections, lubrication, and cleaning, as well as conducting periodic performance tests and measurements. Following the manufacturer’s guidelines and recommendations for maintenance tasks, such as belt tension checks, bearing replacements, or gear inspections, can help identify and address potential issues before they escalate into major failures.

By adhering to these maintenance requirements and best practices, the longevity of gear motors can be maximized. Regular maintenance, proper lubrication, load optimization, temperature control, and timely repairs or replacements of worn components contribute to the reliable operation and extended lifespan of gear motors.

gear motor

What are some common challenges or issues associated with gear motors, and how can they be addressed?

Gear motors, like any mechanical system, can face certain challenges or issues that may affect their performance, reliability, or longevity. However, many of these challenges can be addressed through proper design, maintenance, and operational practices. Here are some common challenges associated with gear motors and potential solutions:

1. Gear Wear and Failure:

Over time, gears in a gear motor can experience wear, resulting in decreased performance or even failure. The following measures can address this challenge:

  • Proper Lubrication: Regular lubrication with the appropriate lubricant can minimize friction and wear between gear teeth. It is essential to follow manufacturer recommendations for lubrication intervals and use high-quality lubricants suitable for the specific gear motor.
  • Maintenance and Inspection: Routine maintenance and periodic inspections can help identify early signs of gear wear or damage. Timely replacement of worn gears or components can prevent further damage and ensure the gear motor’s optimal performance.
  • Material Selection: Choosing gears made from durable and wear-resistant materials, such as hardened steel or specialized alloys, can increase their lifespan and resistance to wear.

2. Backlash and Inaccuracy:

Backlash, as discussed earlier, can introduce inaccuracies in gear motor systems. The following approaches can help address this issue:

  • Anti-Backlash Gears: Using anti-backlash gears, which are designed to minimize or eliminate backlash, can significantly reduce inaccuracies caused by gear play.
  • Tight Manufacturing Tolerances: Ensuring precise manufacturing tolerances during gear production helps minimize backlash and improve overall accuracy.
  • Backlash Compensation: Implementing control algorithms or mechanisms to compensate for backlash can help mitigate its effects and improve the accuracy of the gear motor.

3. Noise and Vibrations:

Gear motors can generate noise and vibrations during operation, which may be undesirable in certain applications. The following strategies can help mitigate this challenge:

  • Noise Dampening: Incorporating noise-dampening features, such as vibration-absorbing materials or isolation mounts, can reduce noise and vibrations transmitted from the gear motor to the surrounding environment.
  • Quality Gears and Bearings: Using high-quality gears and bearings can minimize vibrations and noise generation. Precision-machined gears and well-maintained bearings help ensure smooth operation and reduce unwanted noise.
  • Proper Alignment: Ensuring accurate alignment of gears, shafts, and other components reduces the likelihood of noise and vibrations caused by misalignment. Regular inspections and adjustments can help maintain optimal alignment.

4. Overheating and Thermal Management:

Heat buildup can be a challenge in gear motors, especially during prolonged or heavy-duty operation. Effective thermal management techniques can address this issue:

  • Adequate Ventilation: Providing proper ventilation and airflow around the gear motor helps dissipate heat. This can involve designing cooling fins, incorporating fans or blowers, or ensuring sufficient clearance for air circulation.
  • Heat Dissipation Materials: Using heat-dissipating materials, such as aluminum or copper, in motor housings or heat sinks can improve heat dissipation and prevent overheating.
  • Monitoring and Control: Implementing temperature sensors and thermal protection mechanisms allows for real-time monitoring of the gear motor’s temperature. If the temperature exceeds safe limits, the motor can be automatically shut down or adjusted to prevent damage.

5. Load Variations and Shock Loads:

Unexpected load variations or shock loads can impact the performance and durability of gear motors. The following measures can help address this challenge:

  • Proper Sizing and Selection: Choosing gear motors with appropriate torque and load capacity ratings for the intended application helps ensure they can handle expected load variations and occasional shock loads without exceeding their limits.
  • Shock Absorption: Incorporating shock-absorbing mechanisms, such as dampers or resilient couplings, can help mitigate the effects of sudden load changes or impacts on the gear motor.
  • Load Monitoring: Implementing load monitoring systems or sensors allows for real-time monitoring of load variations. This information can be used to adjust operation or trigger protective measures when necessary.

By addressing these common challenges associated with gear motors through appropriate design considerations, regular maintenance, and operational practices, it is possible to enhance their performance, reliability, and longevity.

gear motor

What are the different types of gears used in gear motors, and how do they impact performance?

Various types of gears are used in gear motors, each with its unique characteristics and impact on performance. The choice of gear type depends on the specific requirements of the application, including torque, speed, efficiency, noise level, and space constraints. Here’s a detailed explanation of the different types of gears used in gear motors and their impact on performance:

1. Spur Gears:

Spur gears are the most common type of gears used in gear motors. They have straight teeth that are parallel to the gear’s axis and mesh with another spur gear to transmit power. Spur gears provide high efficiency, reliable operation, and cost-effectiveness. However, they can generate significant noise due to the meshing of teeth, and they may produce axial thrust forces. Spur gears are suitable for applications that require high torque transmission and moderate to high rotational speeds.

2. Helical Gears:

Helical gears have angled teeth that are cut at an angle to the gear’s axis. This helical tooth configuration enables gradual engagement and smoother tooth contact, resulting in reduced noise and vibration compared to spur gears. Helical gears provide higher load-carrying capacity and are suitable for applications that require high torque transmission and moderate to high rotational speeds. They are commonly used in gear motors where low noise operation is desired, such as in automotive applications and industrial machinery.

3. Bevel Gears:

Bevel gears have teeth that are cut on a conical surface. They are used to transmit power between intersecting shafts, usually at right angles. Bevel gears can have straight teeth (straight bevel gears) or curved teeth (spiral bevel gears). These gears provide efficient power transmission and precise motion control in applications where shafts need to change direction. Bevel gears are commonly used in gear motors for applications such as steering systems, machine tools, and printing presses.

4. Worm Gears:

Worm gears consist of a worm (a type of screw) and a mating gear called a worm wheel or worm gear. The worm has a helical thread that meshes with the worm wheel, resulting in a compact and high gear reduction ratio. Worm gears provide high torque transmission, low noise operation, and self-locking properties, which prevent reverse motion. They are commonly used in gear motors for applications that require high gear reduction and locking capabilities, such as in lifting mechanisms, conveyor systems, and machine tools.

5. Planetary Gears:

Planetary gears, also known as epicyclic gears, consist of a central sun gear, multiple planet gears, and an outer ring gear. The planet gears mesh with both the sun gear and the ring gear, creating a compact and efficient gear system. Planetary gears offer high torque transmission, high gear reduction ratios, and excellent load distribution. They are commonly used in gear motors for applications that require high torque and compact size, such as in robotics, automotive transmissions, and industrial machinery.

6. Rack and Pinion:

Rack and pinion gears consist of a linear rack (a straight toothed bar) and a pinion gear (a spur gear with a small diameter). The pinion gear meshes with the rack to convert rotary motion into linear motion or vice versa. Rack and pinion gears provide precise linear motion control and are commonly used in gear motors for applications such as linear actuators, CNC machines, and steering systems.

The choice of gear type in a gear motor depends on factors such as the desired torque, speed, efficiency, noise level, and space constraints. Each type of gear offers specific advantages and impacts the performance of the gear motor differently. By selecting the appropriate gear type, gear motors can be optimized for their intended applications, ensuring efficient and reliable power transmission.

China Best Sales Three Phase 90W Speed Control AC Gear Reduction Geared Motor   a/c vacuum pump		China Best Sales Three Phase 90W Speed Control AC Gear Reduction Geared Motor   a/c vacuum pump
editor by CX 2023-11-30

China manufacturer Three Phase Asynchronous AC Induction Electric Gear Reducer Fan Blower Vacuum Air Compressor Water Pump Universal Industry Machine Motor with high quality

Product Description

MS Series Aluminum Housing Three Phase Induction Motor adopts the latest design and high quality material and are conform to the IEC standard in function, appearance, output and other requirements.
The efficiency of MS motor meets EFF2 standard in E. U., and can reach the EFF1 standard if requested. MS motor has a lot of advantages including high efficiency, energy saving, low noise, little vibration, light weight, small volume, reliable operation, up-to-date appearance, convenient operation and maintenance.
MS motor is died cast into mounding shape by aluminum-alloy. The base foot can be removable. Various mounting types are available for MS motor.

MS motor is suitable for common working environment and machinery without special requirement, like air-compressor, pump, fan, medical apparatus and instruments, small machines etc.
 Outlined Description :

Power: 0.55kw-15kw Voltage: 380/415/440V( can can done as your need)
Frequency: 50/60hz Enamelled Wire: Copper Wire (Can Done Aluminum wire as Your Need)
Insulation Class: F Mounting Way: B3 Foot /B5 Flange /B35 Foot and Flange/ B14 flange/B34 foot and flange
Protection Grade: IP55 motor body : aluminum of ac motor 

PERFORMANCE DATAS:

MODEL POWER
 (kW)

Current

(A)

SPEED
r/min

Eff

%

Power
factor

Locked rotor torque

Rated torque

Locked rotor current
Rated cuffrent

Breakdown torque
Rated torque

                                                     Synchronous speed 3000r/min
MS63M1-2 0.18 0.53 2720 65.0 0.80 2.2 5.5 2.2
MS63M2-2 0.25 0.69 2720 68.0 0.81 2.2 5.5 2.2
MS71M1-2 0.37 0.99 2740 70.0 0.81 2.2 6.1 2.2
MS71M2-2 0.55 1.4 2740 73.0 0.82 2.2 6.1 2.3
MS80M1-2 0.75 1.8 2840 75.0 0.83 2.2 6.1 2.3
MS80M2-2 1.1 2.6 2840 77.0 0.84 2.2 7.0 2.3
MS90S-2 1.5 3.4 2845 79.0 0.84 2.2 7.0 2.3
MS90L-2 2.2 4.9 2845 81.0 0.85 2.2 7.0 2.3
MS100L-2 3 6.3 2860 83.0 0.87 2.2 7.5 2.3
MS112M-2 4 8.1 2880 85.0 0.88 2.2 7.5 2.3
MS132S1-2 5.5 11.0 2900 86.0 0.88 2.2 7.5 2.3
MS132S2-2 7.5 14.9 2900 87.0 0.88 2.2 7.5 2.3
MS160M1-2 11 21.3 2930 88.0 0.89 2.2 7.5 2.3
MS160M2-2 15 28.8 2930 89.0 0.89 2.2 7.5 2.3
MS160L-2 18.5 34.7 2930 90.0 0.90 2.2 7.5 2.3
Synchronous speed 1500r/min
MS63M1-4 0.12 0.44 1310 57.0 0.72 2.1 4.4 2.2
MS63M2-4 0.18 0.62 1310 60.0 0.73 2.1 4.4 2.2
MS71M1-2 0.25 0.79 1330 65.0 0.74 2.1 5.2 2.2
MS71M2-4 0.37 1.12 1330 67.0 0.75 2.1 5.2 2.2
MS80M1-4 0.55 1.6 1390 71.0 0.75 2.4 5.2 2.3
MS80M2-4 0.75 2.0 1390 73.0 0.76 2.3 6.0 2.3
MS90S-4 1.1 2.9 1390 75.0 0.77 2.3 6.0 2.3
MS90L-4 1.5 3.7 1390 78.0 0.79 2.3 6.0 2.3
MS100L1-4 2.2 5.2 1410 80.0 0.81 2.3 7.0 2.3
MS100L2-4 3 6.8 1410 82.0 0.82 2.3 7.0 2.3
MS112M-4 4 8.8 1440 84.0 0.82 2.3 7.0 2.3
MS132S-4 5.5 11.8 1440 85.0 0.83 2.3 7.0 2.3
MS132M-4 7.5 15.6 1440 87.0 0.84 2.3 7.0 2.3
MS160M-4 11 22.3 1460 88.0 0.84 2.2 7.0 2.3
MS160L-4 15 30.1 1460 89.0 0.85 2.2 7.5 2.3
Synchronous speed 1000r/min
MS71M1-6 0.18 0.74 850 56.0 0.66 1.9 4.0 2.0
MS71M2-6 0.25 0.95 850 59.0 0.68 1.9 4.0 2.0
MS80M1-6 0.37 1.3 885 62.0 0.70 1.9 4.7 2.0
MS80M2-6 0.55 1.8 885 65.0 0.72 1.9 4.7 2.1
MS90S-6 0.75 2.3 910 69.0 0.72 2.0 5.5 2.1
MS90L-6 1.1 3.2 910 72.0 0.73 2.0 5.5 2.1
MS100L-6 1.5 3.9 920 76.0 0.75 2.0 5.5 2.1
MS112M-6 2.2 5.6 935 79.0 0.76 2.0 6.5 2.1
MS132S-6 3 7.4 960 81.0 0.76 2.1 6.5 2.1
MS132M1-6 4 9.8 960 82.0 0.76 2.1 6.5 2.1
MS132M2-6 5.5 12.9 965 84.0 0.77 2.1 6.5 2.1
MS160M-6 7.5 17.2 970 86.0 0.77 2.0 6.5 2.1
MS160L-6 11 24.2 970 87.5 0.78 2.0 6.5 2.1
Synchronous speed 750r/min
MS80M1-8 0.18 0.88 645 51.0 0.61 1.8 3.3 1.9
MS80M2-8 0.25 1.15 645 54.0 0.61 1.8 3.3 1.9
MS90S-8 0.37 1.49 670 62.0 0.61 1.8 4.0 1.9
MS90L-8 0.55 2.17 670 63.0 0.61 1.8 4.0 2.0
MS100L1-8 0.75 2.4 680 71.0 0.67 1.8 4.0 2.0
MS100L2-8 1.1 3.4 680 73.0 0.69 1.8 5.0 2.0
MS112M-8 1.5 4.4 690 75.0 0.69 1.8 5.0 2.0
MS132S-8 2.2 6 705 78.0 0.71 1.8 6.0 2.0
MS132M-8 3 7.9 705 79.0 0.73 1.8 6.0 2.0
MS160M1-8 4 10.3 720 81.0 0.73 1.9 6.0 2.0
MS160M2-8 5.5 13.6 720 83.0 0.74 2.0 6.0 2.0
MS160L-8 7.5 17.8 720 85.5 0.75 2.0 6.0 2.0

 

Frame  The number of poles                                         Installation dimensions         Dimensions
A B C D E F G H M N P R S T K Flange
Number of holes
AB AC AD HD HF L
63M 2.4 110 80 40 11 23 4 8.5 63 75 60 90 0 M5 2.5 7 4 135 130 70 180 130 230
71M 2.4.6 112 90 45 14 30 5 11 71 85 70 105 0 M6 2.5 7 4 150 145 80 195 145 255
80M 2.4.6.8 125 100 50 19 40 6 15.5 80 100 80 120 0 M6 3 10 4 165 175 145 214 185 295
90S 2.4.6.8 140 100 56 24 50 8 20 90 115 95 140 0 M8 3 10 4 180 195 155 250 195 320
90L 2.4.6.8 140 125 56 24 50 8 20 90 115 95 140 0 M8 3 10 4 180 195 155 250 195 345
100L 2.4.6.8 160 140 63 28 60 8 24 100 130 110 160 0 M8 3.5 12 4 205 215 180 270 245 385
112M 2.4.6.8 190 140 70 28 60 8 24 112 130 110 160 0 M8 3.5 12 4 230 240 190 300 265 400

 

Frame number The number of poles         Installation dimensions Dimensions
A B C D E F G H M N P R S T K AB AC AD HD HF L
63M 2.4 100 80 40 11 23 4 8.5 63 115 95 140 0 10 3 7 135 130 70 180 130 230
71M 2.4.6 112 90 45 14 30 5 11 71 130 110 160 0 10 3.5 7 150 145 80 195 145 255
80M 2.4.6.8 125 100 50 19 40 6 15.5 80 165 130 200 0 12 3.5 10 165 175 145 220 185 295
90S 2.4.6.8 140 100 56 24 50 8 20 90 165 130 200 0 12 3.5 10 180 195 155 250 195 320
90L 2.4.6.8 140 125 56 24 50 8 20 90 165 130 200 0 12 3.5 10 180 195 155 250 195 345
100L 2.4.6.8 160 140 63 28 60 8 24 100 215 180 250 0 15 4 12 205 215 180 270 245 385
112M 2.4.6.8 190 140 70 28 60 8 24 112 215 180 250 0 15 4 12 230 240 190 300 265 400
132S 2.4.6.8 216 140 89 38 80 10 33 132 265 230 300 0 15 4 12 270 275 210 345 315 470
132M 2.4.6.8 216 170 89 38 80 10 33 132 265 230 300 0 15 4 12 240 275 210 345 315 510
160M 2.4.6.8 254 210 108 42 110 12 37 160 300 250 350 0 19 5 15 320 330 255 420 385 615
160L 2.4.6.8 254 254 108 42 110 12 37 160 300 250 350 0 19 5 15 320 330 255 420 385 670

 

Installation structure type

Common installation structure type, and the applicable frame size is shown in the table below

Frame number Installation dimensions Dimensions
B3 B5 B35 V1 V3 V5 V6 B6 B7 B8 V15 V36 B14 B34 V18
63~112
132~160

Note: “√” indicates the type of structure that can be manufactured

PRODCUTION DETAILS 

 
FACTORY OUTLINED LOOKING :

ADVANTAGE:
Pre-sales service: 

•We are a sales team, with all technical support from engineer team.
•We value every inquiry sent to us, ensure quick competitive offer within 24 hours.
•We cooperate with customer to design and develop the new products. Provide all necessary document.

After-sales service:
•We respect your feed back after receive the motors.
•We provide 1years warranty after receipt of motors..
•We promise all spare parts available in lifetime use.
•We loge your complain within 24 hours.

Application: Industrial, Universal, Household Appliances, Power Tools
Operating Speed: Low Speed
Number of Stator: Three-Phase
Species: Y, Y2 Series Three-Phase
Rotor Structure: Squirrel-Cage
Casing Protection: Protection Type
Samples:
US$ 200/Piece
1 Piece(Min.Order)

|

Customization:
Available

|

gear motor

How is the efficiency of a gear motor measured, and what factors can affect it?

The efficiency of a gear motor is a measure of how effectively it converts electrical input power into mechanical output power. It indicates the motor’s ability to minimize losses and maximize its energy conversion efficiency. The efficiency of a gear motor is typically measured using specific methods, and several factors can influence it. Here’s a detailed explanation:

Measuring Efficiency:

The efficiency of a gear motor is commonly measured by comparing the mechanical output power (Pout) to the electrical input power (Pin). The formula to calculate efficiency is:

Efficiency = (Pout / Pin) * 100%

The mechanical output power can be determined by measuring the torque (T) produced by the motor and the rotational speed (ω) at which it operates. The formula for mechanical power is:

Pout = T * ω

The electrical input power can be measured by monitoring the current (I) and voltage (V) supplied to the motor. The formula for electrical power is:

Pin = V * I

By substituting these values into the efficiency formula, the efficiency of the gear motor can be calculated as a percentage.

Factors Affecting Efficiency:

Several factors can influence the efficiency of a gear motor. Here are some notable factors:

  • Friction and Mechanical Losses: Friction between moving parts, such as gears and bearings, can result in mechanical losses and reduce the overall efficiency of the gear motor. Minimizing friction through proper lubrication, high-quality components, and efficient design can help improve efficiency.
  • Gearing Efficiency: The design and quality of the gears used in the gear motor can impact its efficiency. Gear trains can introduce mechanical losses due to gear meshing, misalignment, or backlash. Using well-designed gears with proper tooth profiles and minimizing gear train losses can improve efficiency.
  • Motor Type and Construction: Different types of motors (e.g., brushed DC, brushless DC, AC induction) have varying efficiency characteristics. Motor construction, such as the quality of magnetic materials, winding resistance, and rotor design, can also affect efficiency. Choosing motors with higher efficiency ratings can improve overall gear motor efficiency.
  • Electrical Losses: Electrical losses, such as resistive losses in motor windings or in the motor drive circuitry, can reduce efficiency. Minimizing resistance, optimizing motor drive electronics, and using efficient control algorithms can help mitigate electrical losses.
  • Load Conditions: The operating conditions and load characteristics placed on the gear motor can impact its efficiency. Heavy loads, high speeds, or frequent acceleration and deceleration can increase losses and reduce efficiency. Matching the gear motor’s specifications to the application requirements and optimizing load conditions can improve efficiency.
  • Temperature: Elevated temperatures can significantly affect the efficiency of a gear motor. Excessive heat can increase resistive losses, reduce lubrication effectiveness, and affect the magnetic properties of motor components. Proper cooling and thermal management techniques are essential to maintain optimal efficiency.

By considering these factors and implementing measures to minimize losses and optimize performance, the efficiency of a gear motor can be enhanced. Manufacturers often provide efficiency specifications for gear motors, allowing users to select motors that best meet their efficiency requirements for specific applications.

gear motor

Are there environmental benefits to using gear motors in certain applications?

Yes, there are several environmental benefits associated with the use of gear motors in certain applications. Gear motors offer advantages that can contribute to increased energy efficiency, reduced resource consumption, and lower environmental impact. Here’s a detailed explanation of the environmental benefits of using gear motors:

1. Energy Efficiency:

Gear motors can improve energy efficiency in various ways:

  • Torque Conversion: Gear reduction allows gear motors to deliver higher torque output while operating at lower speeds. This enables the motor to perform tasks that require high torque, such as lifting heavy loads or driving machinery with high inertia, more efficiently. By matching the motor’s power characteristics to the load requirements, gear motors can operate closer to their peak efficiency, minimizing energy waste.
  • Controlled Speed: Gear reduction provides finer control over the motor’s rotational speed. This allows for more precise speed regulation, reducing the likelihood of energy overconsumption and optimizing energy usage.

2. Reduced Resource Consumption:

The use of gear motors can lead to reduced resource consumption and environmental impact:

  • Smaller Motor Size: Gear reduction allows gear motors to deliver higher torque with smaller, more compact motors. This reduction in motor size translates to reduced material and resource requirements during manufacturing. It also enables the use of smaller and lighter equipment, which can contribute to energy savings during operation and transportation.
  • Extended Motor Lifespan: The gear mechanism in gear motors helps reduce the load and stress on the motor itself. By distributing the load more evenly, gear motors can help extend the lifespan of the motor, reducing the need for frequent replacements and the associated resource consumption.

3. Noise Reduction:

Gear motors can contribute to a quieter and more environmentally friendly working environment:

  • Noise Dampening: Gear reduction can help reduce the noise generated by the motor. The gear mechanism acts as a noise dampener, absorbing and dispersing vibrations and reducing overall noise emission. This is particularly beneficial in applications where noise reduction is important, such as residential areas, offices, or noise-sensitive environments.

4. Precision and Control:

Gear motors offer enhanced precision and control, which can lead to environmental benefits:

  • Precise Positioning: Gear motors, especially stepper motors and servo motors, provide precise positioning capabilities. This accuracy allows for more efficient use of resources, minimizing waste and optimizing the performance of machinery or systems.
  • Optimized Control: Gear motors enable precise control over speed, torque, and movement. This control allows for better optimization of processes, reducing energy consumption and minimizing unnecessary wear and tear on equipment.

In summary, using gear motors in certain applications can have significant environmental benefits. Gear motors offer improved energy efficiency, reduced resource consumption, noise reduction, and enhanced precision and control. These advantages contribute to lower energy consumption, reduced environmental impact, and a more sustainable approach to power transmission and control. When selecting motor systems for specific applications, considering the environmental benefits of gear motors can help promote energy efficiency and sustainability.

gear motor

Are there specific considerations for selecting the right gear motor for a particular application?

When selecting a gear motor for a specific application, several considerations need to be taken into account. The choice of the right gear motor is crucial to ensure optimal performance, efficiency, and reliability. Here’s a detailed explanation of the specific considerations for selecting the right gear motor for a particular application:

1. Torque Requirement:

The torque requirement of the application is a critical factor in gear motor selection. Determine the maximum torque that the gear motor needs to deliver to perform the required tasks. Consider both the starting torque (the torque required to initiate motion) and the operating torque (the torque required to sustain motion). Select a gear motor that can provide adequate torque to handle the load requirements of the application. It’s important to account for any potential torque spikes or variations during operation.

2. Speed Requirement:

Consider the desired speed range or specific speed requirements of the application. Determine the rotational speed (in RPM) that the gear motor needs to achieve to meet the application’s performance criteria. Select a gear motor with a suitable gear ratio that can achieve the desired speed at the output shaft. Ensure that the gear motor can maintain the required speed consistently and accurately throughout the operation.

3. Duty Cycle:

Evaluate the duty cycle of the application, which refers to the ratio of operating time to rest or idle time. Consider whether the application requires continuous operation or intermittent operation. Determine the duty cycle’s impact on the gear motor, including factors such as heat generation, cooling requirements, and potential wear and tear. Select a gear motor that is designed to handle the expected duty cycle and ensure long-term reliability and durability.

4. Environmental Factors:

Take into account the environmental conditions in which the gear motor will operate. Consider factors such as temperature extremes, humidity, dust, vibrations, and exposure to chemicals or corrosive substances. Choose a gear motor that is specifically designed to withstand and perform optimally under the anticipated environmental conditions. This may involve selecting gear motors with appropriate sealing, protective coatings, or materials that can resist corrosion and withstand harsh environments.

5. Efficiency and Power Requirements:

Consider the desired efficiency and power consumption of the gear motor. Evaluate the power supply available for the application and select a gear motor that operates within the specified voltage and current ranges. Assess the gear motor’s efficiency to ensure that it maximizes power transmission and minimizes wasted energy. Choosing an efficient gear motor can contribute to cost savings and reduced environmental impact.

6. Physical Constraints:

Assess the physical constraints of the application, including space limitations, mounting options, and integration requirements. Consider the size, dimensions, and weight of the gear motor to ensure it can be accommodated within the available space. Evaluate the mounting options and compatibility with the application’s mechanical structure. Additionally, consider any specific integration requirements, such as shaft dimensions, connectors, or interfaces that need to align with the application’s design.

7. Noise and Vibration:

Depending on the application, noise and vibration levels may be critical factors. Evaluate the acceptable noise and vibration levels for the application’s environment and operation. Choose a gear motor that is designed to minimize noise and vibration, such as those with helical gears or precision engineering. This is particularly important in applications that require quiet operation or where excessive noise and vibration may cause issues or discomfort.

By considering these specific factors when selecting a gear motor for a particular application, you can ensure that the chosen gear motor meets the performance requirements, operates efficiently, and provides reliable and consistent power transmission. It’s important to consult with gear motor manufacturers or experts to determine the most suitable gear motor based on the specific application’s needs.

China manufacturer Three Phase Asynchronous AC Induction Electric Gear Reducer Fan Blower Vacuum Air Compressor Water Pump Universal Industry Machine Motor   with high quality China manufacturer Three Phase Asynchronous AC Induction Electric Gear Reducer Fan Blower Vacuum Air Compressor Water Pump Universal Industry Machine Motor   with high quality
editor by CX 2023-11-27

China Hot selling Ie2 Ie3 High Efficiency Asynchronous AC Electric Three Phase Induction Water Pump Air Compressor Gear Box Squirrel Cage Motor near me supplier

Product Description

YE2 YE3(IE2 IE3) High efficiency motor
IE2 IE3 high efficiency asynchronous ac electric Three phase Induction water pump air compressor gear box squirrel cage motor

 

Product Description

Feature and usage

 

YX3 series high efficiency 3 phase motors is high efficiency energy-saving motor.Efficiency index of motor reachedGB186~8’middle-small motor efficiency limited value and efficiency grade’grade 2 efficiency standard,according to IE2/EFF1 efficiency index of IEC standard.Our production advance in domestic and reached advanced level in international.We are on top of the name list that can get the CHINA certification for energy conservation product.

YX3 series 3 phase electric motors have a lot of advantages including high efficiency, energy saving, large starting torque, excellent performance, low noise, low vibration, high reliability, easy operation & servicing etc. While the mounting dimension and rated output power of YX3 series electric motors are in conformity with IEC standard. 

YX3 Series motors are widely used as drive mechanism of various machineries, such as pumps, compressors, machining equipments, transportation system, agricultural mechanism, and food processing mechanism etc. Its operating conditions are the same as Y2 series 3 phase electric motors.
 

Model Explanation

YX3 series motors are totally enclosed fan cold(TEFC). bearing type

 

 

Motor Performance

 

Power range:0.12-315KW

Rated Voltage: 380V 400V 440V 690V

Speed;3000rpm 1500rpm 1000rpm 750rpm 600rpm

Protection Class: IP55

Ambient Temperature: -15°C~40°C

Altitude: not exceed 1000 Meter

Rated Frequency: 50Hz/60Hz

Insulation Class: F

Temprature rise: B

Working Duty: S1(Continuous)

Connection: Star-connection for up to 3kW; Delta-connection for 4kW and above

Company Profile

Certifications

Production Process

Production application

 

Packaging & Shipping

 

 

After Sales Service

 

WE ARE READY

 

Q: Do you offer OEM service?

A: Yes.

 

Q: What is your payment term?

A: 30% T/T in advance, 70% before delivery. Or irrevocable L/C.

 

Q: What is your lead time?

A: About 10-45 days after receiving deposit or original L/C.

 

Q: What certifiicate do you have?

A: We have CE, ISO,CCC and so on. 

 

WHY CHOOSE US 

 

WHAT WE DO AT PINNXUN

  • Stamping of lamination
  • Rotor die-casting
  • Winding and inserting- both manual and semi-automatically
  • Vacuum varnishing
  • Machining shaft, housing, end shields, etc
  • Rotor balancing
  • Painting – both wet paint and powder coating
  • Motor assembly
  • Packing
  • Inspecting spare parts every processing
  • 100% test after each process and final test before packing. 

 WHAT CZPT CAN DO FOR CUSTOMERS

  • PINNXUN supplies standard products to customers.
  • PINNXUN supplies standard products under customers’ brands and packaging, etc
  • PINNXUN  R&D department develops any new products together with the customers.

Structure Description
YX3 series ac induction motor mounting details:

Schematic diagram        
mounting type B3 B35 B5 V1
mounting Discribtion frame with feet,end-shield without flange frame with feet,end-shield with flange frame without feet,end-shield with flange frame without feet,end-shield with flange
Suitable frame H63-355 H63-355 H63-280 H180-355

###

     
Horizontal vertical
motor frame DE side N-DE side DE side N-DE side
63 6201-2RZ/Z2 6201-2RZ/Z2 6201-2RZ/Z2 6201-2RZ/Z2
71 6202-2RZ/Z2 6202-2RZ/Z2 6202-2RZ/Z2 6202-2RZ/Z2
80 6204-2RZ/Z2 6204-2RZ/Z2 6204-2RZ/Z2 6204-2RZ/Z2
90 6205-2RZ/Z2 6205-2RZ/Z2 6205-2RZ/Z2 6205-2RZ/Z2
100 6206-2RZ/Z2 6206-2RZ/Z2 6206-2RZ/Z2 6206-2RZ/Z2
112 6206-2RZ/Z2 6206-2RZ/Z2 6206-2RZ/Z2 6206-2RZ/Z2
132 6208-2RZ/Z2 6208-2RZ/Z2 6208-2RZ/Z2 6208-2RZ/Z2
160 6209-2RZ/Z2 6209-2RZ/Z2 6209-2RZ/Z2 6209-2RZ/Z2
180 6211/Z2 6211/Z2 6211/Z2 6211/Z2
200 6312/Z2 6312/Z2 6312/Z2 6312/Z2
225(2P) 6312/Z2 6312/Z2 6312/Z2 6312/Z2
225(4-8P) 6313/Z2 6212/Z2 6313/Z2 6312/Z2
250(2P) 6313/Z2/Z2 6313/Z1 6313/Z2 6313/Z1
250(4-8P) 6314/Z1 6213/Z1 6314/Z1 6313/Z1
280(2P) 6314/Z1 6313/Z1 6314/Z1 6313/Z1
280(4P) 6317/Z1 6313/Z1 6317/Z1 6313/Z1
315(2P) 6317/Z1 6317/Z1 6317/Z1 6317/Z1
315(4-8P) NU319 6319/Z1 NU319 6319/Z1
355(2P) 6319/Z1 6319/Z1 6319/Z1 6319/Z1
355(4-8P) NU322 6322/Z1 NU322/Z1 6322/Z1
Structure Description
YX3 series ac induction motor mounting details:

Schematic diagram        
mounting type B3 B35 B5 V1
mounting Discribtion frame with feet,end-shield without flange frame with feet,end-shield with flange frame without feet,end-shield with flange frame without feet,end-shield with flange
Suitable frame H63-355 H63-355 H63-280 H180-355

###

     
Horizontal vertical
motor frame DE side N-DE side DE side N-DE side
63 6201-2RZ/Z2 6201-2RZ/Z2 6201-2RZ/Z2 6201-2RZ/Z2
71 6202-2RZ/Z2 6202-2RZ/Z2 6202-2RZ/Z2 6202-2RZ/Z2
80 6204-2RZ/Z2 6204-2RZ/Z2 6204-2RZ/Z2 6204-2RZ/Z2
90 6205-2RZ/Z2 6205-2RZ/Z2 6205-2RZ/Z2 6205-2RZ/Z2
100 6206-2RZ/Z2 6206-2RZ/Z2 6206-2RZ/Z2 6206-2RZ/Z2
112 6206-2RZ/Z2 6206-2RZ/Z2 6206-2RZ/Z2 6206-2RZ/Z2
132 6208-2RZ/Z2 6208-2RZ/Z2 6208-2RZ/Z2 6208-2RZ/Z2
160 6209-2RZ/Z2 6209-2RZ/Z2 6209-2RZ/Z2 6209-2RZ/Z2
180 6211/Z2 6211/Z2 6211/Z2 6211/Z2
200 6312/Z2 6312/Z2 6312/Z2 6312/Z2
225(2P) 6312/Z2 6312/Z2 6312/Z2 6312/Z2
225(4-8P) 6313/Z2 6212/Z2 6313/Z2 6312/Z2
250(2P) 6313/Z2/Z2 6313/Z1 6313/Z2 6313/Z1
250(4-8P) 6314/Z1 6213/Z1 6314/Z1 6313/Z1
280(2P) 6314/Z1 6313/Z1 6314/Z1 6313/Z1
280(4P) 6317/Z1 6313/Z1 6317/Z1 6313/Z1
315(2P) 6317/Z1 6317/Z1 6317/Z1 6317/Z1
315(4-8P) NU319 6319/Z1 NU319 6319/Z1
355(2P) 6319/Z1 6319/Z1 6319/Z1 6319/Z1
355(4-8P) NU322 6322/Z1 NU322/Z1 6322/Z1

How to Assemble a Planetary Motor

A Planetary Motor uses multiple planetary surfaces to produce torque and rotational speed. The planetary system allows for a wide range of gear reductions. Planetary systems are particularly effective in applications where higher torques and torque density are needed. As such, they are a popular choice for electric vehicles and other applications where high-speed mobility is required. Nevertheless, there are many benefits associated with using a planetary motor. Read on to learn more about these motors.

VPLite

If you’re looking to replace the original VP, the VPLite has a similar output shaft as the original. This means that you can mix and match your original gear sets, including the input and output shafts. You can even mix metal inputs with plastic outputs. Moreover, if you decide to replace the gearbox, you can easily disassemble the entire unit and replace it with a new one without losing any output torque.
Compared to a planetary motor, a spur gear motor uses fewer gears and is therefore cheaper to produce. However, the latter isn’t suitable for high-torque applications. The torque produced by a planetary gearmotor is evenly distributed, which makes it ideal for applications that require higher torque. However, you may have to compromise on the torque output if you’re looking for a lightweight option.
The VersaPlanetary Lite gearbox replaces the aluminum ring gear with a 30% glass-filled nylon gear. This gearbox is available in two sizes, which means you can mix and match parts to get a better gear ratio. The VPLite gearbox also has a female 5mm hex output shaft. You can mix and match different gearboxes and planetary gearboxes for maximum efficiency.
Motor

VersaPlanetary

The VersaPlanetary is a highly versatile planetary motor that can be mounted in a variety of ways. Its unique design includes a removable shaft coupler system that makes it simple to swap out the motor with another. This planetary motor mounts in any position where a CIM motor mounts. Here’s how to assemble the motor. First, remove the hex output shaft from the VersaPlanetary output stage. Its single ring clip holds it in place. You can use a drill press to drill a hole into the output shaft.
After mounting the gearbox, you can then mount the motor. The mounting hardware included with the VersaPlanetary Planetary Motor comes with four 10-32 threaded holes on a two-inch bolt circle. You can use these holes to mount your VersaPlanetary on a CIM motor or a CIM-compatible motor. Once assembled, the VersaPlanetary gearbox has 72 different gear ratios.
The VersaPlanetary gearbox is interchangeable with regular planetary gearboxes. However, it does require additional parts. You can purchase a gearbox without the motor but you’ll need a pinion. The pinion attaches to the shaft of the motor. The gearbox is very sturdy and durable, so you won’t have to worry about it breaking or wearing out.

Self-centering planetary gears

A planetary motor is a simple mechanical device that rotates around a axis, with the planets moving around the shaft in a radial direction. The planets are positioned so that they mesh with both the sun gear and the output gears. The carrier 48 is flexibly connected to the drive shaft and can move depending on the forces exerted by the planet gears. In this way, the planets can always be in the optimal mesh with the output gears and sun gear.
The first step in developing a planetary gear motor is to identify the number of teeth in each planet. The number of teeth should be an integer. The tooth diameters of the planets should mesh with each other and the ring. Typically, the teeth of one planet must mesh with each other, but the spacing between them must be equal or greater than the other. This can be achieved by considering the tooth count of each planet, as well as the spacing between planets.
A second step is to align the planet gears with the output gears. In a planetary motor, self-centering planetary gears must be aligned with both input and output gears to provide maximum torque. For this to be possible, the planet gears must be connected with the output shaft and the input shaft. Similarly, the output shaft should also be able to align with the input gear.
Motor

Encoders

A planetary geared motor is a DC motor with a planetary gearbox. The motor can be used to drive heavy loads and has a ratio of 104:1. The shaft speed is 116rpm when it is unloaded. A planetary gearbox has a low backlash and is often used in applications that need high torque. Planetary Motor encoders can help you keep track of your robot’s position or speed.
They are also able to control motor position and speed with precision. Most of them feature high resolution. A 0.18-degree resolution encoder will give you a minimum of 2000 transitions per rotation between outputs A and B. The encoder is built to industrial standards and has a sturdy gearbox to avoid damage. The encoder’s robust design means it will not stall when the motor reaches its maximum speed.
There are many advantages to a planetary motor encoder. A high-quality one will not lose its position or speed even if it’s subject to shocks. A good quality planetary motor will also last a long time. Planetary motors are great for resale or for your own project. If you’re considering buying a planetary motor, consider this information. It’ll help you decide if a particular model is right for your needs.

Cost

There are several advantages of planetary motors. One of the biggest is their cost, but they can also be used in many different applications. They can be combined with a variety of gearboxes, and are ideal for various types of robots, laboratory automation, and production applications. Planetary gearboxes are available in many different materials, and plastic planetary gearboxes are an economical alternative. Plastic gearboxes reduce noise at higher speeds, and steel input stage gears are available for high torques. A modified lubrication system can help with difficult operating conditions.
In addition to being more durable, planetary motors are much more efficient. They use fewer gears, which lowers the overall cost of production. Depending on the application, a planetary motor can be used to move a heavy object, but is generally less expensive than its counterpart. It is a better choice for situations where the load is relatively low and the motor is not used frequently. If you need a very high torque output, a planetary motor may be the better option.
Planetary gear units are a good choice for applications requiring high precision, high dynamics, and high torque density. They can be designed and built using TwinCAT and TC Motion Designer, and are delivered as complete motor and gear unit assemblies. In a few simple steps, you can calculate the torque required and compare the costs of different planetary gear units. You can then choose the best model for your application. And because planetary gear units are so efficient, they are a great option for high-end industrial applications.
Motor

Applications

There are several different applications of the planetary motor. One such application is in motion control. Planetary gearboxes have many benefits, including high torque, low backlash, and torsional stiffness. They also have an extremely compact design, and can be used for a variety of applications, from rack and pinion drives to delta robotics. In many cases, they are less expensive to manufacture and use than other types of motors.
Another application for planetary gear units is in rotary tables. These machines require high precision and low backlash for their precise positioning. Planetary gears are also necessary for noise reduction, which is a common feature in rotary tables. High precision planetary gears can make the height adjustment of OP tables a breeze. And because they are extremely durable and require low noise, they are a great choice for this application. In this case, the planetary gear is matched with an AM8000 series servomotor, which gives a wide range of choices.
The planetary gear transmission is also widely used in helicopters, automobiles, and marine applications. It is more advanced than a countershaft drive, and is capable of higher torque to weight ratios. Other advantages include its compact design and reduced noise. A key concern in the development of this type of transmission is to minimize vibration. If the output of a planetary gear transmission system is loud, the vibration caused by this type of drive system may be too loud for comfort.

in Louisville United States sales price shop near me near me shop factory supplier AC Three 3 Phase 240V 400V Parallet Shaft Helical Reducer Gear Motor manufacturer best Cost Custom Cheap wholesaler

  in Louisville United States  sales   price   shop   near me   near me shop   factory   supplier AC Three 3 Phase 240V 400V Parallet Shaft Helical Reducer Gear Motor manufacturer   best   Cost   Custom   Cheap   wholesaler

Quality and credit score are the bases that make a company alive. The higher precise CNC equipment, such as Gradual-feeding wire-cut machine, jig grinding machine and electric powered discharge machine, ensures the leading top quality precision of mould processing, with the higher productive and environmental safety acid rolling line getting the greatest raw content changing equipment in the subject in china The wildly use of automatic milling machine, substantial-speed computerized feeding punch, higher velocity automatic rolling and assembling machine guarantees the large quality and performance of components and chain producing. Our goods are used in numerous fields. AC Three three Period 240V 400V PXiHu (West Lake) Dis.Hu (West Lake) Dis.let shaft Helical EPT Gear EPT

Features:
1. Compact composition and straightforward assembly
2. Extensive velocity ranges and large torque
3. Minimal sound, excellent sealing functionality, higher efficiency
4. Stable and secure, EPT lifetime, EPT
five. Multi-structure, a variety of assembling approaches

Product photo:

Specification:

ANG Helical Gear EPT
Model R17 ~ 187, F37-177, K37-187, S37-97
Enter EPT .06kw ~ 250kw
Input pace 750rpm ~ 3000rpm
Reduction ratio one/one.3 ~ 1/27000
Enter motor AC (1 section or three phase) / DC / EPTLDC motor
Set up variety Foot / Reliable shaft / Hollow shaft / Output flange #8230
Performance 94% ~ ninety eight % for R F K sequence
EPT of housing die-solid aluminum / Cast iron / Stainless metal
EPT of equipment Correct grinding, course six
Heat treatment Carburizing and quenching
Equipment EPTrake / Flange / EPT adapter / Torque arm #8230

FAQ

Q: Can you make the gear motor with customization?
A: Indeed, we can personalize per your request, like EPT, voltage, speed, shaft dimensions, flange, terminal box, IP grade, etc.

Q: Do you provide samples?
A: Yes. Sample is available for screening.

Q: What is your MOQ?
A: It is 1pcs for the commencing of our organization.

Q: What is your guide time?
A: StXiHu (West Lake) Dis.Hu (West Lake) Dis.rd product need five-30days, a little bit EPTer for personalized goods.

Q: Do you offer EPT assistance?
A: Sure. Our organization have style and deveXiHu (West Lake) Dis.Hu (West Lake) Dis.ment staff, we can supply EPT help if you
want.

Q: How to ship to us?
A: It is available by air, or by sea, or by prepare.

Q: How to spend the money?
A: T/T and L/C is favored, with various forex, incXiHu (West Lake) Dis.Hu (West Lake) Dis. USD, EUR, RMEPT, etc.

Q: How can I know the item is ideal for me?
A: gt1ST confirm drawing and specification gt2nd take a look at sample gt3rd start off mass creation.

Q: Can I arrive to your business to check out?
A: Of course, you are welcome to check out us at any time.

Q: How shall we get in touch with you?
A: You can deliver inquiry directly, and we will answer inside 24 hours.

  in Louisville United States  sales   price   shop   near me   near me shop   factory   supplier AC Three 3 Phase 240V 400V Parallet Shaft Helical Reducer Gear Motor manufacturer   best   Cost   Custom   Cheap   wholesaler

  in Louisville United States  sales   price   shop   near me   near me shop   factory   supplier AC Three 3 Phase 240V 400V Parallet Shaft Helical Reducer Gear Motor manufacturer   best   Cost   Custom   Cheap   wholesaler

in Lome Togo sales price shop near me near me shop factory supplier 0.12kw-315kw Siemens 1le0001 Series Three Phase Asynchronous Electric Motor AC Motor Induction Motor for Water Pump, Air Compressor, Gear Reducer Fan Blower manufacturer best Cost Custom Cheap wholesaler

  in Lome Togo  sales   price   shop   near me   near me shop   factory   supplier 0.12kw-315kw Siemens 1le0001 Series Three Phase Asynchronous Electric Motor AC Motor Induction Motor for Water Pump, Air Compressor, Gear Reducer Fan Blower manufacturer   best   Cost   Custom   Cheap   wholesaler

Service & Top quality controlWe supply comprehensive drawings and supply whenever needed. We inspect each and every piece of bearing by ourselves before delivery. our goods are selling nicely in the American, European, South American and Asian marketplaces. .12kw-315kw SIEMENS 1LE0001 Collection Three Phase Asynchronous Electric Motor AC Motor Induction Motor for Water Pump, Air Compressor, Equipment EPT Admirer EPTlower

Manufacture by Siemens StXiHu (West Lake) Dis.Hu (West Lake) Dis.rd Motor LTD.

Motor Summary

Frame dimensions eighty- 355
Pole 2-8
Rated voltage 380V
Frequency 50Hz
EPT .75kw ~ 315Kw
Safety diploma IP55 (IEC 60034-5)
Cooling method IC411
Insulation class F
Ambient Temperature -twenty degC~40 degC
Altitude up to 1000m in excess of sea
Operating Duty S1(Steady)

Item Description

1. Accessible in two,four,six pole motor(.75kw and up) with efficiency quality 3. According to GEPT18613-2012 and effectiveness course IE2(50HZ) according to IEC 60034-30.

two. Optimized compact style design.

3. stXiHu (West Lake) Dis.Hu (West Lake) Dis.rd mounting design in accordance to IEC 60034-7:IMEPT3, IMEPT5, IMEPT35 and and so forth.

four. Re-greasing units for body measurement 280-355 as stXiHu (West Lake) Dis.Hu (West Lake) Dis.rd, and for body dimensions a hundred ~ 250 as selection.

five. Winding protections with PTC, PT100 and KTY84-130 as option.

6. Converter-fed operation at mains voltage up to 460V,1LE0001 motors are capable for converter-fed procedure with specific characteristics load.

Software fields

1LE0001 motors are suited for pumps, enthusiasts, compressors, teXiHu (West Lake) Dis.tle EPT and mechanical EPT apps exactly where variable or constant pace is necessary.

Organization capability

ZheJiang EPT EPT EPT Co.,Ltd is a single of the best distributors cooperate with Siemens (EPT), Over the previous 11years, our professional services Get consumer recognition and EPT of suppliers.

Warehouse

Our business office EPTlock

FAQ

Q: What is your MOQ of this item?
A: 1PCS.
For the 1st time cooperation, we acknowledge trial sample get.

Q: What is actually your payment conditions?
A: thirty% T/T deposit, 70% equilibrium ahead of cargo or L/C at sight.

Q: What’s the leed time?
A: stXiHu (West Lake) Dis.Hu (West Lake) Dis.rd item twenty daEPTafter getting your L/C or T/T deposit.

Q: Can we utilised our own model on motors ?
A: Sorry, not attainable.

Q: How EPT is your warranty?
A: 12 months following getting EPT/L.

  in Lome Togo  sales   price   shop   near me   near me shop   factory   supplier 0.12kw-315kw Siemens 1le0001 Series Three Phase Asynchronous Electric Motor AC Motor Induction Motor for Water Pump, Air Compressor, Gear Reducer Fan Blower manufacturer   best   Cost   Custom   Cheap   wholesaler

  in Lome Togo  sales   price   shop   near me   near me shop   factory   supplier 0.12kw-315kw Siemens 1le0001 Series Three Phase Asynchronous Electric Motor AC Motor Induction Motor for Water Pump, Air Compressor, Gear Reducer Fan Blower manufacturer   best   Cost   Custom   Cheap   wholesaler

in Quito Ecuador sales price shop near me near me shop factory supplier 25W Low Rpm Three Phase 220V 380V 50Hz AC Gear Motor manufacturer best Cost Custom Cheap wholesaler

  in Quito Ecuador  sales   price   shop   near me   near me shop   factory   supplier 25W Low Rpm Three Phase 220V 380V 50Hz AC Gear Motor manufacturer   best   Cost   Custom   Cheap   wholesaler

We will give ideal companies and high quality items with all sincerity. The higher exact CNC tools, these kinds of as Sluggish-feeding wire-cut equipment, jig grinding device and electric discharge device, guarantees the best high quality precision of mould processing, with the higher successful and environmental safety acid rolling line becoming the premier uncooked material changing gear in the discipline in china The wildly use of computerized milling equipment, high-pace automated feeding punch, high velocity computerized rolling and assembling device guarantees the substantial quality and performance of factors and chain creating. Our AdvantagesProducts Big quantity in Inventory, No MOQ essential We comply with all the global requirements, these kinds of as ISO9001 and TS16949 requirements. 25W Minimal Rpm Three Period 220V 380V 50Hz AC Gear Motor

one.Specialized specs:
one).motor dimension:80*80
2).motor EPT:25W
three).motor voltage:a hundred and ten/220VAC
four).rated pace:1300/2700r/min
five).reduction ratio:3 three.6 five six seven.5 nine ten twelve.5 fifteen 18 twenty 25 30 36 forty 50 60 seventy five ninety a hundred a hundred and twenty 150 180 two hundred
six).Programs: Comprehensive sets of EPT gear,Automatic assembly line, Printing EPTry, EPT EPTry.
seven).We can change this dc equipment motor technical specs and shaft szie,motor coloration according to your EPT needs.
8).You can see the model details here http:///goods/DC-Gear-MOTOR-DC5GU60-120-1688631.html.
9).We are EPTized in motors for 10 a long time,welcome your enquiry!I will give you a very good price and great services.

two.Creation Circulation

3.Company Information

In latest many years,EPTry has been committed to the manufacture of the motor goods and the primary merchandise can be categorised into the following sequence, particularly DC motor, DC equipment motor, AC motor, AC gear motor, Stepper motor, Stepper equipment motor, Servo motor and Linear actuator sequence.

Our motor goods are broadly applied in the fields of aerospace sector, automotive business, finXiHu (West Lake) Dis.Hu (West Lake) Dis.al equipment, EPT equipment, EPT EPT and robotics, medical tools, office products, EPT EPTry and EPT business, providing consumers reputable personalized answers for driving and managing.

4.Our Companies

1). EPT Service:

Quick Reply

All enquiry or e mail be replied in 12 hrs, no hold off for your organization.

Expert Group

Inquiries about products will be replied skillfully, specifically, ideal advice to you.

Brief Guide time

Sample or tiny orEPTsent in seven-15 days, bulk or custom-made orEPTabout 30 days.

Payment Selection

T/T, Western Union,, L/C, and many others, easy for your organization.

EPTefore shipment

EPTke pictures, send out to buyers for affirmation. Only confirmed, can be transported out.

Language Decision

EPTesides EPT, you can use your very own language by electronic mail, then we can translate it.

2). Customization Services:

Motor specification(no-load pace , voltage, torque , diameter, sound, daily life, tests) and shaft length can be tailor-produced according to customer’s requirements.

5.Deal amp Shipping and delivery

  in Quito Ecuador  sales   price   shop   near me   near me shop   factory   supplier 25W Low Rpm Three Phase 220V 380V 50Hz AC Gear Motor manufacturer   best   Cost   Custom   Cheap   wholesaler

  in Quito Ecuador  sales   price   shop   near me   near me shop   factory   supplier 25W Low Rpm Three Phase 220V 380V 50Hz AC Gear Motor manufacturer   best   Cost   Custom   Cheap   wholesaler